• 제목/요약/키워드: In densification

검색결과 817건 처리시간 0.027초

Ti-6Al-4V 분말 성형체의 상온 및 고온에서의 치밀화 거동 (Densification Behavior of Ti-6Al-4V Powder Compacts at Room and High Temperatures)

  • 홍승택;김기태;양훈철
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1124-1132
    • /
    • 2000
  • Viscoplastic response and densification behaviors of Ti-6AI-4V powder compacts under uniaxial compression are studied at room and high temperatures with various initial relative densities and strain rates. The yield function and strain-hardening law proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to compare experimental data with finite element calculations for porous Ti6A14V powder compacts. Displacement-relative density, displacement-load relations and deformed geometry of Ti-A14V powder compacts were compared with finite element results. Density distributions in Ti-6AI-4V powder compacts were also measured and compared with finite element results.

냉간 압축 하에서 금속 분말의 치밀화 거동 (Densification Behavior of Metal Powder Under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.95-104
    • /
    • 2002
  • Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densifcation behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

Surface Densification Coupled with Higher Density Processes Targeting High-performance Gearing

  • Hanejko, Francis;Rawlings, Arthur;King, Patrick;Poszmik, George
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.738-739
    • /
    • 2006
  • This paper will describe a powder and processing method that facilitates single press-single sintered densities approaching $7.5g/cm^3$. At this sintered density, mechanical properties of the powder metal (P/M) component are significantly improved over current P/M technologies and begin to approach the performance of wrought steels. High performance gears have the added requirement of rolling contact fatigue durability that is dependent upon localized density and thermal processing. Combining high density processing of engineered P/M materials with selective surface densification enables powder metal components to achieve rolling contact fatigue durability and mechanical property performance that satisfy the performance requirements of many high strength automotive transmission gears. Data will be presented that document P/M part performance in comparison to conventional wrought steel grades.

  • PDF

Densification Mechanism of Warm Compaction for Iron-based Powder Materials

  • Qu, Shengguan;Li, Yuanyuan;Xia, Wei;Chen, Weiping
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.201-202
    • /
    • 2006
  • An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.

  • PDF

Various Master Sintering Curve Concepts and its Applications

  • Park, Seong-Jin;Blaine, Deborah C.;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.66-67
    • /
    • 2006
  • The master sintering curve (MSC) is derived from densification data over a range of heating rates and temperatures. To improve the accuracy, several modifications were proposed: multi-phase MSC for solid state sintering with phase changes, MSC for liquid phase sintering, and MSC with consideration of grain growth. The developed MSC models were applied to several material systems such as molybdenum, stainless steels, and tungsten heavy alloys (WHA), in order to evaluate the effect of compaction pressure, phase change, grain growth, and composition on densification, to classify regions having different sintering mechanism, and to help engineer design, optimize, and monitor sintering cycles.

  • PDF

Microwave로 가열한 알루미나의 소결 및 입성장 거동 (Densification and rain Growth of Alumina Heated by Microwave)

  • 김도형;오성록;김종희
    • 한국세라믹학회지
    • /
    • 제29권4호
    • /
    • pp.305-311
    • /
    • 1992
  • As compared with conventional sintering, rapid heating in microwave system could enhance sinterability and final properties of alumina with a very short sintering time. In this study microwave sintering was performed using zirconia brick as a reaction chamber which was positioned in a 2.45 GHz(700 W) multimode microwave cavity. Microwave-sintered alumina showed high density and smaller grain size than conventionally sintered alumina because the ratio of densification rate/grain growth rate was increased by rapid heating.

  • PDF

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF

Modified Densification Process for Increasing Strength Properties of Pine and Gmelina Wood from Community Forests

  • Yunianti, Andi Detti;Tirtayasa P., Kidung;Suhasman, Suhasman;Taskirawati, Ira;Agussalim, Agussalim;Muin, Musrizal
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.418-424
    • /
    • 2019
  • Densification is a process for improving the strength properties of wood from the felling of young trees, which is a common harvest practice in community forests. A series of experiments was conducted to refine the process with particular regard to the determination of suitable pretreatment and treatment conditions. Samples of pine and gmelina measuring $23cm(L){\times}20cm(W){\times}2cm(T)$ underwent pretreatment through immersion in a 1:1 $CH_3COOH-H_2O_2$ solution at concentrations of 15%, 20%, and 30%. Samples pretreated with the 20% solution showed the greatest improvement in strength; further experiments were conducted to determine the optimum treatment conditions in terms of temperature and duration following immersion. Test samples with the same dimensions as those in the pretreatment experiment were soaked in a 1:1 20% $CH_3COOH-H_2O_2$ solution and warmed in a water bath. The test samples were then individually hot pressed to the target thickness, which was 30% less than the original thickness and held at $150^{\circ}C$ or $170^{\circ}C$ for 15 or 30 minutes. The treated samples were cut for an analysis of their density, recovery of set, and bending strength. Pine and gmelina exhibited the best characteristics after treatment at $150^{\circ}C$ for 30 and 15 minutes, respectively. The results suggest that the modified densification process had increased the bending strength of the wood, but the temperature and duration of treatment must be carefully considered for different wood species.

$B_4C$의 소결에 관한 연구 (A Study for the Sintering of Boron Carbide)

  • 오정훈;오근호;이종근;김도경;이준근;김종희
    • 한국세라믹학회지
    • /
    • 제22권1호
    • /
    • pp.60-66
    • /
    • 1985
  • Hard shaped bodies are made by sintering a cold-pressed compact of a boron carbide compound which contains a densification aid. Titanium diboride and carbon were used as a densification aid in a range of 1% to 10% by weight. The effects of sintering temperature and additives on linear shrinkage porosity hardness bend strength and microstructure were examined. The initial partical size dependence on the sintered density was also discussed.

  • PDF

The Application of P/M Advanced Techniques to Sintered Gears

  • Chongxi, Bao;Zhouqiang, Shen;Zhengping, Shu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.987-988
    • /
    • 2006
  • The processes of P/M affect the properties of sintered gears. The different techniques of P/M lead to the different properties of sintered gears. This paper summarizes new progress in powder metallurgy for sintered gears. These progresses include warm compaction, high velocity compaction, sinter hardening, high temperature sintering, infiltration, CNC powder press and surface densification etc.

  • PDF