• Title/Summary/Keyword: In Situ Degradation

Search Result 231, Processing Time 0.025 seconds

In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants

  • Deepeka, Deepeka;Paramdeep, Kaur;Jyoti, Jyoti;Sandeep, Bansal;Sonal, Singhal
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.527-543
    • /
    • 2022
  • A novel, green, versatile and magnetically retrievable BiFeO3/CDR (Bismuth ferrite/coriander) nanocomposites were fabricated via simple wet chemical method utilizing in situ functionalized, cheap coriander seed powder (CDR 5%, 10%, 15% and 20 wt%) as a fuel to enhance the efficiency of pristine BiFeO3. A comparative study was performed between BiFeO3/CDR and BiFeO3/CNT (Bismuth ferrite/carbon nanotubes) nanocomposites for the removal of various hazardous pollutants from waste water. The successful synthesis of the fabricated nanomaterials was monitored via FT-IR, Powder XRD, FE-SEM, CV, VSM, CHNS/O and XPS studies. The synthesized nanomaterials were employed for the oxidative degradation of Carbol fuchsin, Reactive black 5, Ciprofloxacin and Doxorubicin; adsorption of a pesticide malathion; and reduction studies for Para-nitrophenol (PNP). The fabricated nanomaterials (BiFeO3/CDR) showcased excellent efficiency and comparable results with (BiFeO3/CNT) for the removal of model pollutants. Moreover, synthesized green heterojunction was also testified for mixture of textile and pharmaceutical waste. Hence CDR can be utilized as a better alternative of CNTs.

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

Long-term Testing and Analysis of a ScSZ/LaSrCuFe Cell

  • Wackerl, Jurgen;Peck, Dong-Hyun;Markus, Torsten
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.788-795
    • /
    • 2008
  • An electrolyte supported SOFC cell was tested at $800^{\circ}C$ in air for 3600 h with an applied current density of $200\;mA/cm^2$ to examine possible cathode degradation issues. A scandium- stabilized zirconia (ScSZ) with additional manganese doping (ScSZ: Mn) was used as electrolyte. A strontium and copper-doped lanthanum ferrite (LaSrCuFe) and platinum were used as cathode and quasi-anode material, respectively. The DC resistance was logged over the complete testing period. Additionally, impedance spectroscopy was used from time to time to track changes of the cell in-situ. Post-test analysis of the cell using methods like scanning electron microscopy imaging and other electrochemical testing methods allow the identification of different degradation sources. The results indicate a promising combination of electrolyte and cathode material in terms of chemical compatibility and electrical performance.

Determination of in situ degradation parameters and feeding level of pineapple (Ananas comosus L.) cannery by-product to Hanwoo steers

  • Choi, Yongjun;Park, Keunkyu;Lee, Sangrak;Na, Youngjun
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • Objective: The objectives of this study were to determine the in situ degradation parameters and appropriate feeding level of pineapple cannery by-products (PCB) based on the growth performance and blood parameters of growing Hanwoo (Bos taurus coreanae) steers fed various levels of PCB. Methods: Two ruminally cannulated Holstein cows were used for in situ disappearance rate measurements. Nylon bags (5×10 cm, 45 ㎛ pore size) filled with 5 g of PCB in triplicate were inserted into the ventral sac of the two cannulated Holsteins cows and incubated for 0, 2, 4, 8, 16, 24, and 48 h. A total of 16 castrated growing Hanwoo steers (12.5±0.5 months old, 302.9±25.7 kg of initial body weight [BW]) were used for the experiment. Animals were stratified by initial BW and then randomly assigned to one of four experimental diets (0%, 1.5%, 3.0%, or 6.0% of PCB, on the dry matter [DM] basis) fed for 91-d, including 30-d of adaptation. Results: Soluble fraction a of DM and crude protein (CP) was 61.9% and 86.0%, fraction b of DM and CP was 32.7% and 11.2%, and indigestible fraction c of DM and CP was 5.4% and 2.8%. The 6.0% PCB feeding group showed lower productivity compared to animals in the other treatments. Increasing the dietary level of PCB did not alter DM intake, but it was numerically lowest in the 6.0% feeding group. The gain to feed ratio was linearly decreased by increasing of PCB. The quadratic broken-line test estimated that 2.5% (DM basis) was the maximum feeding level of PCB in growing Hanwoo steers (y = 0.103 - 0.001×[1.245-x]2, R2 = 0.18). Conclusion: Diets containing up to 2.5% PCB can be fed to growing Hanwoo steers without adverse effects on growth performance.

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

Effects of Mixing Time for Total Mixed Rations using Corn Silage on Ruminal In situ Dry Matter Degradation and Milk Production in Dairy Cows (옥수수 사일리지 이용 섬유질배합사료의 배합시간에 따른 In situ 반추위 분해율 및 착유우의 산유특성에 미치는 영향)

  • Lim, Dong-Hyun;Ki, Kwang-Seok;Choi, Sun-Ho;Kim, Tae-Il;Park, Seong-Min;Park, Su-Bum;Kwon, Eung-Gi;Kim, Eun-Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • This study was conducted to evaluate the effect of mixing time for TMR (total mixed rations) mixed with corn silage on particle size, peNDF (physically effective neutral detergent fiber), laceration, and ruminal in situ dry matter degradation. The study also aimed to evaluate the effect of consumption of the TMR on the milk yield and milk components of mid-lactational dairy cows. TMRs were mixed for 30 minutes (T1) and 50 minutes (T2) using the same material. All samples were then analyzed with a Penn State Particle Size Separator (PSPS). The particle size of T1 was significantly lower in the bottom pan (8 mm>) than that of T2 (p<0.01). $peNDF_{&gt;8.0}$ was significantly higher in T1 (17.18%) than in T2 (13.85%) (p<0.01). For ruminal in situ dry matter degradation of particle retention (>19 mm), no significant difference was found after 72 hours incubation, although T1 degradation was significantly higher after 24 hours incubation (p<0.01). Milk yield was no different between the groups of cows, whereas the milk fat from T1 fed cows was significantly higher (p<0.01). The results show that feeding TMR mixed for 30 minutes to dairy cows may improve the physical value of forage without negative effects on the milk yield and milk components.

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid

  • Zhao, Sanping;Cao, Mengjie;Wu, Jun;Xu, Weilin
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1025-1031
    • /
    • 2009
  • Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.

Condition of ex situ Bioremediation of Polycyclic Aromatic Hydrocarbons in Marine Sediments (해양퇴적토내 다환방향족탄화수소 생분해 증진 조건 연구)

  • Jung, Hong-Bae;Yun, Tian;Lee, Hee-Soon;Kwon, Kae-Kyoung;Kim, Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.179-185
    • /
    • 2005
  • Polycyclic aromatic hydrocarbons (PAHs) are a kind of toxic environmental pollutants and has been accumulated usually in marine sediments. Due to their potential hazardous to human, removal of PAHs from environments has been great concern. In the present study, the effect of microbial inoculation and the supplementation of mixed form cyclodextrin (M-CD) was assessed in the pre-sterilized or nonsterilized microcosms for optimizing operational conditions for ex situ bioremediation of sediments contaminated by PAHs. Activity of electron transport system (ETSA) was increased by the addition of M-CD regardless of inoculation of microorganisms in microcosms without sterilization. The degradation rate of PAHs in sterilized microcosms was app. 9-20% by the inoculation of single strain and 24-37% by the inoculation of microbial consortium supplemented with 1% M-CD, respectively. The degradation was not observed in microcosms without sterilization under the same conditions. The proportion of inoculated microorganisms also decreased in nonsterilized microcosms. Signals of inoculated bacteria were decreased to detection limit after 2 days in the microcosms without M-CD. In conclusion, microbial inoculation with appropriate carbon sources and removal of natural flora and grazers are required for the efficient ex situ bioremediation of sediments contaminated by PAHs in bioslurry reactor.

  • PDF

Determination of Nutritive Value of Wild Mustard, Sinapsis arvensis Harvested at Different Maturity Stages Using In situ and In vitro Measurements

  • Kamalak, Adem;Canbolat, Onder;Gurbuz, Yavuz;Ozkan, Cagri Ozgur;Kizilsimsek, Mustafa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1249-1254
    • /
    • 2005
  • The aim of this study was to determine the effect of maturity stage on the nutritive value of wild mustard straw in terms of chemical composition, in situ, in vitro dry matter degradability and calculated ME. The nutritive values of wild mustard, Sinapsis arvensis hays harvested at three stages were evaluated by chemical composition, in vitro gas production and in situ dry matter degradation methods. Gas production or dry matter (DM) degradation were determined at 0, 3, 6, 12, 24, 48, 72 and 96 h and their kinetics were described using the equation p = a+b(1-e$^{-ct}$). Maturity had a significant effect on both the chemical composition and degradability of wild mustard. Neutral detergent fibre (NDF) and acid detergent fibre (ADF) (p<0.001) increased with increasing maturity whereas the crude protein (CP) (p<0.001) decreased. The gas produced after 96 h incubation ranged between 64.7 and 81.5 ml per 0.200 g of dry matter. The gas production (ml) at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The gas production at all incubation times and estimated parameters (a, b (a+b), metabolizable energy (ME) and organic matter digestibility (OMD)) were negatively correlated with NDF and ADF. The DM disappearance after 96 h incubation ranged between 50.8 and 76.1%. The in situ DM disappearance at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The in situ dry matter disappearance at all incubation times and some estimated parameters (c, a, b and effective dry matter degradability (EDMD)) were negatively correlated with NDF and ADF but positively correlated with CP. The nutritive value of wild mustard continually changed as it matured. Wild mustard, harvested at the proper stage of maturity offers considerable potential as a high quality forage for ruminants during the winter feeding period. The present study showed that if higher quality forage is an objective, wild mustard should be harvested at the early flowering stage.

In vitro Degradation of β-TCP/PLGA Composites Prepared with Microwave Energy in Simulated Body Fluid (마이크로파에 의해 합성된 β-TCP/PLGA 복합체의 의사체액에서의 분해 거동)

  • Jin, Hyeong-Ho;Min, Sang-Ho;Hyun, Yong-Taek;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.676-680
    • /
    • 2006
  • The biodegradable $\beta$-tricalcium phosphate ($\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The degradation behavior of $\beta$-TCP/PLGA composite was investigated by soaking in simulated body fluid (SBF) for 4 weeks. The molecular weight of the $\beta$-TCP/PLGA composites decreased with soaking time until week 2, whereas the loss rate of molecular weight reduced after week 2. The incubation time was needed for the degradation of the $\beta$-TCP, indicating that the $\beta$-TCP should be detached from the PLGA matrix and then degraded into SBF solution. The studies of mass loss of the composites with the soaking time revealed that the degradation behavior of PLGA would be processed with the transformation from the polymer to the oligomer followed by the degradation. Morphological changes, whisker-like, due to transformation and degradation of polymer in the composites were observed after week 2. On the basis of the results, it found that the degradation behavior of $\beta$-TCP/PLGA composites was influenced by the $\beta$-TCP content in the composites and the degradation rate of the composites could be controlled by the initial molecular weight of PLGA in the composites.