• Title/Summary/Keyword: In Ground Effect

Search Result 3,799, Processing Time 0.033 seconds

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Flow analysis of 3-Dimensional Power-Augmented Ram Wing in Ground Effect (3차원 PAR WIG (Powder Augmented Ram Wing in Ground Effect) 의 수치연구)

  • 곽승현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.55-64
    • /
    • 1997
  • A wing operating in close proximity to the ground exhibits a reduction in induced drag, which increase the lift/drag ratio. The poert-augmented ram (RAR) phenomenon involves directiing the efflux from forward mounted propulsion ststem under the wings, with the efflux nearly stagnated under the wings. In the present paper, 3 dimentional PAR was numerically studied by solving the Navier-Stokes equations. Pressure distribution and velocity vectors are calculated around the wing surface and the ground. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord; 0.05, 0.1, 0.3 and 0.8. The shape of model is NACA 0012 with a span/chord ratio of 3.0. According to the numerical results, the relationship between lift/drag and height/chord is fairly reasonable.

  • PDF

Ground-Tunnel Interaction Effect Depending on the Ground Stiffness (지반의 강성변화에 따른 지반-터널 동적 상호작용 연구)

  • 김대상
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.339-343
    • /
    • 2001
  • Shield tunnel having circular section located in the soil or soft rock layer is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately during earthquakes. Based on this knowledge, the ground-tunnel interaction effect for this particular vibration mode is investigated. The ground surrounding a tunnel is assumed to be a homogeneous elastic medium. The bonded boundary condition on the ground-tunnel interface is considered. This suggests a firm bond between the ground and the tunnel lining. As Poisson's ratio and stiffness of the ground increases, the strain induced within the tunnel lining increases.

  • PDF

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

Experimental Study on the Small-Scale Rotor Hover Performance in Partial Ground Conditions (부분적 지면조건 하에서의 소형 로터 블레이드 제자리 비행 성능에 대한 실험적 연구)

  • Seo, Jin-Woo;Lee, Byoung-Eon;Kang, Beom-Soo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • This paper focuses on the hover performance experiment of a small-scale single rotor in partial ground conditions. In this study, small-scale rotor blade rotating device and floor panel are used to include partial ground effect. Thrust and torque were measured with varying collective pitch angles at fixed rotor rotating speed. The overlap distance between rotor and ground is d, the rotor diameter is D. It was shown that the ground effects have little effect on the rotor performance until d/D is 0.25. Four blade rotor has more increased thrust and more reduced power than those of two blade rotor because of stronger ground effect. In addition, it was also found that the thrust increases as a collective pitch angle become smaller. Based on these experiment results, we deduced new empirical equation considered blade number and partial ground effect.

Effect of initial ground temperature measurement on the design of borehole heat exchanger (초기 지중온도 측정이 지중 열교환기 설계에 미치는 영향)

  • Song, Yoon-ho;Kim, Seong-Kyun;Lee, Kang-Kun;Lee, Tae-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.600-603
    • /
    • 2009
  • We compared relative importance of thermal conductivity and initial ground temperature in designing borehole heat exchanger network and also we test accuracy of ground temperature estimation in thermal response test using a proven 3-D T-H modeler. The effect of error in estimating ground temperature on calculated total length of borehole heat exchanger was more than 3 times larger than the case of thermal conductivity in maximum 20% error range. Considering 10% of error in estimating thermal conductivity is generally acceptable, we have to define the initial ground temperature within 5% confidence level. Utilizing the mean annual ground surface temperature and the geothermal gradient map compiled so far can be a economic way of estimating ground temperature with some caution. When performing thermal response test for estimating ground temperature as well as measuring thermal conductivity, minimum 100 minutes of ambient circulation is required, which should be even more in case of very cold and hot seasons.

  • PDF

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements (지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.289-300
    • /
    • 2015
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.

Aerodynamic Investigation of Three-Dimensional Wings in Ground Effect for Aero-levitation Electric Vehicle (공기부상 전동 운행체의 지면효과를 받는 3차원 날개에 대한 공력해석 연구)

  • Oh H. J.;Seo J. H.;Moon Y. J.;Cho J. S.;Yoon Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.196-201
    • /
    • 2004
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various ground clearances and wing spans at the Reynolds number of $2\times10^6$. Numerical results show that a sizeable three-dimensional flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and that this is conjectured a primary cause for the high lift-to-drag(L/D) reduction rate of the main wing, when the wing span is decreased. Improvements on L/D ratios of the wings with small spans are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction.

  • PDF

A Numerical Analysis of the Thickness-Induced Effect on the Aerodynamic Characteristics of Wings Moving Near Ground

  • Han, Cheolheui;Cho, Jinsoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A numerical method to simulate Wing-In-Ground(WIG) effects for the wings moving near ground is developed. The aerodynamic analysis scheme for the wings is based on a compressible non-planar lifting surface panel method and the WIG effect is included by images. The thickness-induced effect is implemented into the lifting surface panel method by using the teardrop theory. The numerical simulation is done for the rectangular wings by varying the ground proximity. The present method is validated by comparing the calculated aerodynamic coefficients with other numerical results and measured data, showing good agreements.

  • PDF