• Title/Summary/Keyword: In Ground Effect

Search Result 3,793, Processing Time 0.027 seconds

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Assessing the Root Development and Biomass Allocation of Magnolia champaca under Various Mulching at Montane Rainforest Cameron Highlands, Pahang, Malaysia

  • Wahidullah Rahmani;Frahnaz Azizi;Mohamad, Azani Bin Alias
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.96-104
    • /
    • 2023
  • The successful restoration program requires a comprehensive understanding of variables influencing seedling efficiency. Below-ground is hypothesized to have a major impact on seedling performance of species when planted in agriculture, and degraded areas with different types of mulching. This study investigated on Sg. Terla Forest Reserve in Cameron Highlands Pahang, Malaysia. In this study randomized complete block design (RCBD) was used. The excavation method was applied to study the root system development, above, and below ground biomass distributions under different types of mulching: coconut mulching (CM), oil palm mulching (OM), plastic mulching (PM) and control (CK). The root diameter, main root length, lateral root length, root coiling, and root direction toward to sun were recorded. The results in this study indicate that mulching had significant effect on root diameter, main root length, and root distributions among treatments while for lateral root length, root: shoot ratio, dry biomass distributions, and above and below ground biomass did not showed significant effect among treatments. The highest values for root diameter, lateral root length, main root length, root distributions, dry biomass distributions and above and below ground biomass were showed in CM treatments. However 75% of root coiling was observed in seedlings between treatments.

A study on the variety of strength about soft ground improvement material according to Mixed soil (혼합대상 토질에 따른 지반개량재의 강도 변화에 관한 연구)

  • Lee, Kwang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1023-1030
    • /
    • 2005
  • This study is an experiment paper about the ground improvement material which using the waste residual(slag and paper fly ash) by fire. we are research to concern according to the soil to mix the ground improvement material at show strength effectiveness. Also, we can expect a long time strength increase effectiveness as reduce the dryness contraction. They are distinguished to the clay of the reclamation ground and silty sand soil. We examined around an uniaxial compress test and scanning electron microscopy. The uniaxial stress increases according to the increase of the mixed ratio of ground improvement material and the water contents have been reduced the strength value. A clay's improvement effectiveness is big but in the silty sand soil to express small effectiveness. A ground improvement material mixing of the quantity to write can not expect the effect of Ettringite.

  • PDF

Analysis of Stress Transfer Mechanism of SCP-Reinforced Composite Ground (SCP 복합지반의 응력전이거동 해석)

  • Kim, Yun-Tae;Park, Hyun-Il;Lee, Hyung-Joo;Kim, Sang-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.227-234
    • /
    • 2004
  • Sand compaction pile (SCP) method is composed of compacted sand pile inserted into the soft clay deposit by displacement method. SCP-reinforced ground is composite soil which consists of the SCP and the surrounding soft soil. When a surcharge load is applied on composite ground, time-dependent behavior occurs in the soft soil due to consolidation according to radial flow toward SCP and stress transfer also takes place between the SCP and the soft soil. This paper presents the numerical results of cylindrical composite ground that was conducted to investigate consolidation characteristics and the stress transfer mechanism of SCP-reinforced composite ground. The results show that the consolidation of soft clay has a significant effect on the stress transfer mechanism and stress concentration ratio of composite ground

  • PDF

A Study on transverse Behavior of Lifeline System Due to Liquefaction-induced Permanent Ground Displacement (액상화 영구지반변형에 의한 라이프라인 구조물의 횡방향 거동에 관한 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.369-376
    • /
    • 1998
  • The purpose of the present study is to analyze the response of pipelines subjected to liquefaction-induced permanent ground displacement and to discuss the failure prediction of domestic waterway pipelines. Initially here, characteristics of liquefaction are reviewed and then permanent ground displacement is investigated base on previous earthquake hazard cases. Next, considering the distribution of the transverse permanent ground displacement and equivalent spring constant effect, formulas obtained by a beam theory are established to analyze continuous pipelines. This analysis was performed without consideration of axial effects. So the finite element analysis was used in order to consider the axial stiffness of soil. As a result, degree of liquefaction, width of deformed ground and axial stiffness are crucial points for evaluation the failure of pipelines subjected to permanent ground displacement.

  • PDF

Characteristics of Spectrum using Observed Ground Motion from the Yongwol and the Kyoungju Earthquakes(II) (영월 및 경주지진 파형의 주파수 분석(II))

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.57-60
    • /
    • 1999
  • Amplification factor spectrum using the observed strong ground motions database in the Korean Peninsula has been obtained and compared with Standard Rpectrum which wa suggested by United States Nuclear Regulatory Committee. The observed ground motions from the Yongwol and the Kyoungju Earthquakes respectively which are supposed to represent domestic seismotectonic characteristics such as seismic source attenuation of the propagation meium and site specific effect are used for the analysis of amplification factor spectrum,. The database are slightly different from the those of the second study. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds those of Standard Response Spectrum The results suggest that the characteristics of seismic strong ground motion which are supposed to represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Analysis of Ground Resistance Reduction Effect by Common use of Ground Poles (접지극의 공용화를 통한 접지저항 저감효과 분석)

  • Hong Sung Taek;Lee Eun Chun;Shin Gang Wook
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.440-442
    • /
    • 2004
  • The ground resistance of middle scale ground pole was measured by using the 'fall of potential method' suggested by IEEE However, the measured resistance value was lower than the minimum value required To solve this problem. ground pole was set to be used commonly. In this research. ground resistance was measured using the newly suggested method and the results were analyzed to see if they satisfied the domestic regulation The results of this research will be applied to the management works as well as the establishment of new plan.

  • PDF

Improvement Effect and Electrical Characteristics of Soft Ground with Plastic Electrode Spacing (전극간 거리에 따른 연약지반의 지반개량 효과와 전기적 특성)

  • Byeon, Inseong;Kang, Hongsig;Sun, Seokyoun;Han, Jeonghoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Soft ground stabilization is needed to construct large civil facilities on the soft clay ground. Pre-loading method, which is accelerating consolidation method, is generally used to stabilize the soft ground. However, pre-loading method is required long construction period and quantities of fill material. Therefore, electro-osmosis method is used to replace pre-loading method for stabilizing the soft ground. Electro-osmosis method is disadvantageous in constructive and economic aspects because it is needed a metallic electrode. So, in order to solve the those disadvantages, plastic electrode was developed to replace metallic electrode. Plastic electrode, which is made by using nano-technology on existing Plastic Drain Board (PDB), was used to supply the electric power. In this study, therefore, the model test was conducted to confirm the effect of improvement and electrical characteristics of soft ground by spacing of plastic electrode. The result shows that the effect of improvement of soft ground was decreased up to 45% by increasing electrode spacing and electrical characteristics on the soft ground were influenced by consolidation settlement with electrode spacing.

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.