• 제목/요약/키워드: Impulsive pressure

검색결과 100건 처리시간 0.024초

하이브리드 입자-격자 방법에서의 압력장 계산 (Computation of Pressure Fields for a Hybrid Particle-Mesh Method)

  • 이승재;서정천
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석 (Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method)

  • 박종률;오택열
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.487-496
    • /
    • 2002
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The equivalent masses and heights for the tank contents are presented for engineering design model.

전자기 성형에 의한 알루미늄 합금관과 폴리우레탄봉의 접합연구 (A Study on Electromagnetic Joining of Aluminum Tubes to Polyurethane Cores)

  • 김남환;손희식;황운석;이종수
    • 한국정밀공학회지
    • /
    • 제9권1호
    • /
    • pp.66-74
    • /
    • 1992
  • The joining processes of aluminum alloy tubes and polyurethane cores by electromagnetic impulsive compression are studied. The influences of various geometrical factors (the length of joined part, the thickness of tube, and the clearance between tube and core) and the process factors(the discharged energy and the number of discharge)are examined experimentally and discussed. And the magnetic pressure in metal/polymer joining is calculated and is compared to the pressure in metal/metal joining. The following results are obtained: (1) The joining strength is dependent upon the residual radial strain of the polyurethane cores. (2) The joining strength increases as discharged energy and the number of discharge increase, but decreases as the clearance, thickness and joining length of tube increases. (3) In the case of metal/polymer joining energy loss is increased and the value of magnetic pressure is less than that in the case of metal/metal joining.

  • PDF

지능형 포탄의 저 감속 회수장치를 이용한 포탄의 감속방법 (Deceleration Method of Munition to used Soft Recovery System for Smart Munition)

  • 김명구;조종두;이승수;유일용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.191-196
    • /
    • 2007
  • With the development of micro electronic circuits and optical equipment, the demand for developing smart munitions with the ability to autonomously search for and attack targets has increased. Since the electronic components within smart munitions are affected by high temperatures, pressure, and impulsive forces upon the combustion of gunpowder, stability and reliability need to be secured for them. Securing those stability and reliability requires soft recovery system which can decelerate smart munitions. A theoretical analysis of flow is performed for the secure recovery of bullets on the basis of Navier-Stokes equation for compressible fluids. The inner pressure on a pressure tube, the speeds of bullets, and the deceleration of munitions are calculated theoretically. Theoretical results are compared with the data from the experiment with soft recovery system set up at the laboratory.

  • PDF

고속철도 터널내를 전파하는 압축파의 일차원 수치해석 (One-Dimensional Numerical Study of Compression Wave Propagating in High-Speed Railway Tunnel)

  • 김희동;엄용균;송미일태
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1280-1290
    • /
    • 1995
  • In order to investigate the compression wave propagating in a high-speed railway tunnel, a numerical calculation was applied to the wave phenomenon occurring in a model tunnel. Unsteady, one-dimensional inviscid or viscous flows were solved by an explicit TVD scheme, and the calculated flows were compared with the results of measurement in real tunnels. Tunnel noises caused by emission of the compression wave were characterized in terms of excess pressure of compression wave, pressure gradient in the wave front and width of the compression wave. Calculated attenuation, pressure gradient and width of compression wave with the propagating distance agreed with the results of measurement in the real tunnels. The results also show that tunnel noises are proportional to the train velocity entering the tunnel.

압축기용 흡입머플러의 음향 및 유동해석 (Acoustic and Flow-filed Analysis of Suction Muffler in Compressor)

  • 주재만;이학준;오상경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1162-1167
    • /
    • 2001
  • Suction valve fluttering is generated by reciprocating motions of the piston inhaling and discharging process of gas in the hermetic compressor. A reactive type suction muffler, which produces high pressure-drop because of its complicated flow path, controls the impulsive noise radiated from the flutter of suction valve. The high-pressure drop in the muffler increases the transmission loss, but reduces the EER(Energy Efficiency Ratio) of the compressor. We consider how to design the high acoustic attenuation and low pressure-drop performance to take account of the acoustic and flow performances of the suction muffler. In this study, we identified the suction noise source of compressor from the measurement of the acoustic pulsation and flutter of suction valve. We analyzed the acoustic characteristics of muffler using the finite element method, and compared the experimental and analytical characteristics of flow path of suction muffler. Theoretical predictions and experimental results are compared from the viewpoint of the acoustic performance and energy efficiency of the compressor.

  • PDF

관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구 (The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션 (3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater)

  • 최군호;전재형;이광호;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제32권3호
    • /
    • pp.180-201
    • /
    • 2020
  • 유한길이의 혼성방파제 선단에서 발생되는 회절파의 영향으로 방파제 길이를 따라 중복파고가 변동하고, 이로 인하여 케이슨에 작용하는 파압이 공간적으로 변동하며, 또한 케이슨의 활동거리가 상이한 사행피해가 발생한다는 것은 잘 알려져 있다. 제체에 작용파력의 공간적인 변동은 2차원적인 실험이나 수치해석으로서는 접근될 수 없는 문제이다. 본 연구는 olaFlow 모델을 적용하여 고천단의 사석마운드 상에 놓인 케이슨의 선단 주변에서 회절파의 발생과 배후역으로의 영향 및 제체에 작용하는 충격쇄파압을 포함한 파압의 공간적인 변동 등을 2차원 및 3차원수치기법으로 접근한다. 또한, 수치해석에서는 혼성방파제 주변에서 평균파고, 평균수평유속 및 평균난류운동에너지의 변동특성을 면밀히 분석·검토한다. 이로부터 동일한 입사파랑에 대해 케이슨에 작용하는 파압분포가 방파제의 길이에 따라 크게 변동하며, 2차원수치해석에서는 발생되지 않았든 충격쇄파압이 3차원수치해석에서는 발생되는 경우가 나타나고, 충격쇄파압의 발생 시 경우에 따라 기존의 설계조건보다 매우 큰 파압이 정수면 근방의 케이슨 전면 벽체에 작용되는 등의 중요한 결과를 확인할 수 있었다.

폭굉을 고려한 압력용기 최대허용압력 결정방법의 제안 (Method for Determination of Maximum Allowable Pressure of Pressure Vessel Considering Detonation)

  • 최진복
    • 한국전산구조공학회논문집
    • /
    • 제31권5호
    • /
    • pp.235-241
    • /
    • 2018
  • 압력용기의 내압은 압력용기 설계의 중요한 인자이며 이를 바탕으로 관련 설계기준 및 구조해석결과에 따라 압력용기의 두께 및 직경과 같은 기하학적 형상이 결정된다. 그러나 압력용기 내부에서 폭굉이 일어날 경우 이 폭굉압력을 적절히 고려하여 압력용기를 설계할 수 있는 설계기준은 미흡한 실정이다. 일반적으로 폭굉이 발생할 경우, 초기 폭굉압력이 용기 벽면에 도달하여 반사하는 반사압력은 초기압력의 2배 이상이라고 알려진다. 그러나 폭굉압력은 구조물의 고유주기보다도 짧은 시간 안에 최대치에 도달한 후 급격하게 감소하는 경향을 보이며, 이 경우 실제 용기벽면이 받게 되는 압력은 반사압력에 비해 매우 작을 수 있다. 따라서 본 연구에서는 이러한 폭굉의 특성을 고려하여 압력용기가 견뎌야 하는 적절한 등가의 폭굉압력을 산정하는 방법을 제안함으로써 폭굉을 고려한 효율적인 압력용기 설계기준을 제시하고자 하였다.