• Title/Summary/Keyword: Impulse load

Search Result 136, Processing Time 0.027 seconds

A study of Dielectric Strength of Spacer for Tap Changer in a $SF^6 $ Gas Insulated Transformer ($SF^6 $ 가스변압기의 탭절환기용 스페이서의 절연내력에 관한 연구)

  • Heo, U-Haeng;Ha, Yeong-Sik;Hong, Jeong-Gyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.11
    • /
    • pp.556-562
    • /
    • 2001
  • Spacer is used between main tank and auxiliary tank for on load tap changer in gas insulated power transformer. This paper deals with electrical design of spacer and discusses different analysis method of between 2D FEM(finite element method) and 3D FEM. To design spacer, we modeled structure of two kind of coaxial cylinders of spacer conductors and analysised electric field of spacer at impulse and induced test voltage condition. Spacer has 13 conductors and electric field was changed according to arrangement of conductors. We could find out arrangement of conductors at which electric stress is minimum. And this arrangement was satisfied with actual test conditions.

  • PDF

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

A Study of Channel Modeling and Simulation for Power Line Communication Systems using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전력선통신 채널모델링 및 시뮬레이션에 관한 연구)

  • Lee, Jong-Joo;Cha, Jae-Sang;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.279-285
    • /
    • 2006
  • Power line communication channels are very complicated and models for communication channels vary with the types of electrical equipment, devices and load fluctuations. So, modeling and analysis of power line channels for implementation of power line communication systems is a very important process. Power line channel modeling and simulation are performed based on power system transient simulation models and power system CAD tools to create precise and accurate models. In this paper, a channel modeling and simulation method is proposed for power line communication systems using PSCAD/EMTDC, in which a PN 63 sequence code generator is applied for impulse response of the power line channel in the simulation model.

The Design Analysis and Electrical Performance Test of Polymer LP Insulator (폴리머 LP애자의 설계해석과 전기적 성능 시험)

  • 이운용;조한구;박상호;송홍준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.399-401
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission and distribution line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. In this paper, polymer line post insulator has been designed and investigated electric field distribution by FEM. Designed LP insulators have been tested as insulator performance test, such as power frequency voltage test, lightning impulse voltage test, artificial pollution test and flexural load test.

  • PDF

A Design and Control of an Active Magnetic Bearing System (능동형 자기 베어링 시스템의 설계 및 제어)

  • 김종문;최영규
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

Reliability Assessment of Forest Fire on Transmission Lines Polymer Insulator(I) (송전용 폴리머 애자의 산불영향 신뢰성 평가(I))

  • Choi, In-Hyuk;Lee, Il-Dong;Jeon, Young-Joon;Lee, Chul-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.425-428
    • /
    • 2004
  • 65% of the Korean peninsula is composed of mountainous area, 97% of which is composed of forest. Therefore, there is high possibility of mountain fire because a lot of potential inflammables such as fallen leaves are stacked on the ground. Moreover, most of the overhead transmission lines in Korea are operated on the mountain. However, there has been very little study for the effect of mountain fire on polymeric insulator for transmission line, though the study is significantly required Therefore, in this study the authors observed the deformation of the housing of the insulator under fire with respect to the ignition time, using artificial ignition testing equipment, and investigated electrical and mechanical characteristics of the insulator by dry withstand voltage test, impulse flashover test and tensile load test.

  • PDF

Bearing ultra-fine fault detection method and application (베어링 초 미세 결함 검출방법과 실제 적용)

  • Park, Choon-Su;Choi, Young-Chul;Kim, Yang-Hann;Ko, Eul-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1093-1096
    • /
    • 2004
  • Bearings are elementary machinery component which loads and do rotating motion. Excessive loads or many other reasons can cause incipient faults to be created and grown in each component. Moreover, it happens that incipient faults which were caused by manufacturing or assembling process' errors of the bearings are created. Finding the incipient faults as early as possible is necessary to the bearings in severe condition: high speed or frequently varying load condition, etc. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing fault signal makes periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF

Blast behavior of steel infill panels with various thickness and stiffener arrangement

  • Lotfi, Saeid;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.587-600
    • /
    • 2018
  • Infill panel is the first element of a building subjected to blast loading activating its out-of-plane behavior. If the infill panel does not have enough ductility against the loading, it breaks and gets damaged before load transfer and energy dissipation. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Also, it plays a pivotal role in maintaining sensitive main parts against blast loading. Concerning enough ductility of the infill panel out-of-plane behavior, the impact force enters the horizontal diaphragm and is distributed among the lateral elements. This article investigates the behavior of steel infill panels with different thicknesses and stiffeners. In order to precisely study steel infill panels, different ranges of blast loading are used and maximum displacement of steel infill under such various blast loading is studied. In this research, finite element analyses including geometric and material nonlinearities are used for optimization of the steel plate thickness and stiffener arrangement to obtain more efficient design for its better out-of-plane behavior. The results indicate that this type of infill with out-of-plane behavior shows a proper ductility especially in severe blast loadings. In the blasts with high intensity, maximum displacement of infill is more sensitive to change in the thickness of plate rather the change in number of stiffeners such that increasing the number of stiffeners and the plate thickness of infill panel would decrease energy dissipation by 20 and 77% respectively. The ductile behavior of steel infill panels shows that using infill panels with less thickness has more effect on energy dissipation. According to this study, the infill panel with 5 mm thickness works better if the criterion of steel infill panel design is the reduction of transmitted impulse to main structure. For example in steel infill panels with 5 stiffeners and blast loading with the reflected pressure of 375 kPa and duration of 50 milliseconds, the transmitted impulse has decreased from 41206 N.Sec in 20 mm infill to 37898 N.Sec in 5 mm infill panel.

Analysis of Rear-end Collision Risks Using Weigh-in-Motion Data (고속도로 Weigh-in-Motion(WIM) 이벤트 자료를 활용한 후미추돌 위험도 분석 기법)

  • Oh, Min Soo;Park, Hyeon Jin;Oh, Cheol;Park, Soon Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.152-167
    • /
    • 2018
  • The high-speed weigh-in-motion system can collect the traveling speed and load information of individual vehicles, which can be used in a variety of ways for the traffic surveillance. However, it has a limit to apply the high-speed weigh-in-motion data directly to a safety analysis because high-speed weigh-in-motion's raw data are point measured data. In order to overcome this problem, this paper proposes a method to calculate the conflict rate and the Impulse severity based on surrogate safety measures derived from the detection time, detection speed, vehicle length, vehicle type, vehicle weight. It will be possible to analyze and evaluate the risk of rear-end collision on freeway traffic. In addition, this study is expected to be used as a fundamental for identifying crash risks and developing policies to enhance traffic safety on freeways.

A Study on Dynamic Stability Regions for Parabolic Shallow Arches (낮은 포물선(抛物線) 아치의 동적(動的) 안정영역(安定領域)에 관한 연구(硏究))

  • Park, Kwang Kyou;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 1986
  • Dynamic stability of parabolic shallow arches, which are supported by hinges at both ends, is investigated. The Runge-Kutta method is used to perform time integrations of the differential equations of motion with proper boundary conditions. Based on Budiansky-Roth criterion, dynamic critical load combinations are evaluated numerically for cases of step loads of infinite duration and impulse loads, individually. The results are plotted to get interaction curves. The loci of the dynamic critical loads, which are obtained in this study, are proposed as boundaries between the dynamic stability and instability regions for the parabolic shallow arches. The results for the parabolic shallow arches are also compared with those for sinusoidal arches of the same arch rises. According to the investigation, the dynamic stability regions for the parabolic arches are larger than those for the sinusoidal arches. However, it is shown that the arch rise is the more governing factor than the shape.

  • PDF