• Title/Summary/Keyword: Impulse antenna

Search Result 60, Processing Time 0.035 seconds

Investigation of Influences of UWB Antennas on Impulse Radio Channel (임펄스 전파 채널에서의 초광대역 안테나 영향 연구)

  • Park Young-Jin;Song Jong-Hwa;Kim Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.165-170
    • /
    • 2005
  • In this paper, influences of a ultra wideband (UWB) antenna on impulse channel measurement are investigated in time domain (TD) and frequency domain (FD) as well. Firstly, impulse response of an UWB antenna is obtained and then using the result of impulse response of the UWB antenna, influences of the antenna on impulse radio channel is analyzed. Furthermore, using the impulse response of the UWB anenna, method of impulse radio channel analysis is presented by excluding the effect of the antenna from an impulse radio channel. For verifying the theory, a modified conical monopole antenna is designed for measuring impulse radio channel and its impulse response is obtained. After that, in order to investigate the effects of the UWB antenna on an impulse radio channel, multipath environments are set up in an anechonic chamber and transmission coefficient for each multipath environment is measured with an aid of vector network analyzer. Data measured in frequency domain is transformed into those in time domain by way of signal processing. Measurement shows that such properties of the antenna as dispersion and ringing affect impulse radio channel. Moreover, using the impulse response of the antenna, impulse response of only multipath channel is obtained.

Characterization and Analysis of UWB Antennas in Time Domain (시간 영역에서의 초광대역 안테나 특성 해석)

  • Song Jong-Hwa;Park Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.287-294
    • /
    • 2006
  • In the paper, characterization and analysis of UWB(Ultra Wide Band) antennas in time domain are described. The impulse propagation channel including UWB antennas is proposed for the analysis in time domain. Using the proposed propagation channel, the technique of obtaining impulse response of UWB antenna is proposed. Also, ringing, peak value of the impulse response, and the width of the impulse response are introduced as parameters for characterizing a UWB antenna in time domain. A modified UWB conical monopole antenna, a UWB TEM horn antenna, and a UWB stepped fat monopole antenna were fabricated. From the measurement of reflection coefficients, three antennas had bandwidth more than 3 GHz. The impulse responses of the antennas were measured in an anechoic chamber. The results showed that the TEM horn with highest gain has the highest peak amplitude and the stepped fat monopole antenna with narrowest bandwidth for reflection coeffcient had the widest width of the impulse response. Also, ringing in the stepped fat monopole antennas and the UWB conical monopole antenna were observed.

Analysis of Impulse Dispersion for IR-UWB Antenna Using Time-Frequency Analysis (시간-주파수 분석을 이용한 IR-UWB 안테나 임펄스 분산 특성 분석)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1371-1379
    • /
    • 2010
  • This paper presents an analysis of impulse dispersion for impulse radio ultra-wide band(IR-UWB) antenna. A set of antenna structure configurations are highlighted with verification based on the STFT(Short Time Fourier Transform) in 3.1~5.1 GHz: first, a taper-slotted antenna allowing the optimal impulse transmission, and second, 4 types of the omni-directional IR-UWB antenna using different feed structures(microstrip line, and CPW(Coplanar Waveguide)). The proposed STFT allows the analysis of the IR-UWB antenna's dispersion characteristic.

Design and Performance Evaluation of IR-UWB Tapered Slot Antenna for Optimum Impulse Radio Radiation (임펄스 신호 방사를 위한 IR-UWB용 테이퍼 슬롯 안테나 설계 및 성능평가)

  • Kim, Jong-Min;Koh, Young-Mok;Ra, Keuk-Whan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.103-115
    • /
    • 2012
  • In this paper, design and performance evaluation of Tapered Slot Antenna for IR-UWB which propagates impulse radio is performed. TSA which has directional characteristic in UWB band should have low radiation loss and minimized impulse radiation distortion. In order to achieve these objectives, the paper designed wide band Impedance transformer and microstrip-slotline transit region structured TSA feeder line. By using the fabricated TSA, the radiation pattern was measured in the radio anechoic chamber. Pulse fidelity and distortion equation was induced to evaluate time domain characteristics according to the impulse radiation. Pulse fidelity of Impulse radiation show favorable results more than 93% within ${\pm}30^{\circ}$ beam width.

Optimization Design in Time Domain on Impulse GPIR System (임펄스 GPIR시스템의 시간영역 최적화 설계)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, system optimization design technique of an impulse ground penetrating image radar (GPIR) in time domain is proposed to improve depth resolution of the system. For the purpose, time domain analysis method of key components such as impulse generator and UWB antenna is explained and by simulation, parameters of each component are determined. In particular, by standardizing the impulse signal, spectrum efficiency of a radiated impulse signal is improved and a U-shaped planar dipole antenna for a UWB antenna is developed. By equipping a parabolic metal reflector with the proposed antenna, external noise is prevented and the ability of radiating an input impulse into ground is improved. In addition, to remove ringing effect of the propose antenna which causes serious degradation of the system performance, resistors are loaded at the edge of the antenna and then Tx and Rx UWB antennas are optimized by simulation in time domain. For images of targets buried under the ground migration technique is applied and influence of tough ground surface on distortion of received impulse signals is reduced using technique of noise and signal distortion reduction in time domain and its time resolution is enhanced. To verify the design optimization procedure, a prototype of an GPIR and an artificial test field are made. Measurement results show that the resolution of the system designed is as good as that of a theoretical model.

A study on the UWB Antenna Design Techniques for Improving Pulse Fidelity (펄스 충실도 개선을 위한 UWB 안테나 설계기법 연구)

  • Kim, Jung-Min;Kang, Eun-Kyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.299-307
    • /
    • 2013
  • In this paper, design of UWB Antenna which propagate impulse by pulse fidelity and distortion equation was induced and applied. UWB Antenna which has directional characteristic in UWB band should have low radiation loss and impulse radiation distortion. As a result, the paper designed wide band impedance transformer and microstrip slotline transit region structured antenna feeder line. By using the fabricated UWB antenna, the radiation pattern was measured in the radio anechoic chamber. Pulse fidelity of impulse radiation show good results more than 93% within ${\pm}30^{\circ}$ beam width.

Design of a TEM Horn Antenna for Impulse Response Measurement System (임펄스 응답 측정 시스템용 TEM 혼 안테나의 설계)

  • 정경호;편성호;정삼영;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.669-676
    • /
    • 2003
  • In this paper, a novel design method for an ultra-wide band TEM horn antenna is proposed on the basis of parallel plate waveguide theory. A principle of TEM modes generation is analyzed and the characteristics of this antenna are experimentally investigated. The proposed TEM horn antenna has an exponentially tapered structure to increase matching bandwidth. Also, the designed TEM horn has shortened length but increased aperture so that the bandwidth for cutoff frequency is increased. The measured result show that the proposed TEM hem antenna has the frequency band of 75 MHz to 1200 MHz for VSWR less than 2.0 and the bandwidth of the TEM horn becomes more than twice comparing to that of a linearly tapered TEM hem. It is anticipated that the manufactured antenna is applicable to UWB systems for impulse response measurement.

Design of Vivaldi Antenna suitable for Impulse-like Waveform Radiation (임펄스 유사 신호 복사에 적합한 비발디 안테나 설계)

  • Doojin Lee;Bong Jin Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2024
  • In this paper, the method to design the antenna, which is suitable for an impulse-like waveform radiation, is presented. In general, the impulse-like waveform has its spectrum of around sub GHz bandwidth and the antenna should be properly designed for not only operating wide-bandwidth also reflecting the time domain characteristics for near-zone impulse radar applications. In this regard, Vivaldi antenna has been designed and characterized in terms of short-pulse radiating aspects in the time domain and verified by measured results. The designed antenna has shown to be operating within wide-bandwidth and to be stable for the input impedance from 1.8 to more than 10GHz. The far-zone radiating waveform has been investigated on each plane at the interval of 30degree and the designed antenna has shown to be a directive characteristic. It can be seen that those results proposed are widely applicable to the near area sensing applications such as ground-penetrating radar.

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

Influence of lossy ground on impulse propagation in time domain for impulse ground penetrating radar (초광대역 임펄스 지반탐사레이더에서 지면의 영향에 따른 임펄스 전파 특성 연구)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper, influence of lossy ground and gap variation between lossy ground and UWB antenna on impulse propagation in time domain for impulse ground penetrating radar (GPR) is numerically and experimentally investigated. For this study, a novel planar UWB fat dipole antenna is developed. First, influence of lossy ground and gap variation between lossy ground and UWB antenna is simulated. For verification, a test field of sand and wet clay soil is built and using the developed dipole antenna, transmission behavior is investigated at the test field. With an aid of IDFT (inverse discrete Fourier transform), time domain impulse response for transmission coefficient measured and simulated in frequency domain is obtained. Measurement and simulation show that the frequency of maximum transmission coefficient and transmission coefficient are increased with higher dielectric constant and larger gap distance. In time domain, it is shown that for higher dielectric constant, the amplitude of the received signal in time domain is higher and reflected signals are seriously modified. Also, it is found that variation of gap between antenna and ground surface makes timing of peak value changed.