• Title/Summary/Keyword: Improved Response Surface Method

Search Result 155, Processing Time 0.027 seconds

Design Optimization of Passive Control Devices for Dynamic Stall Control (동적실속 수동제어장치 최적설계)

  • Joo, Wan-Don;Lee, Bo-Sung;Yee, Kwan-Jung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • In order to improve dynamic stall characteristics of an oscillating airfoil, optimal design has been performed for fixed nose droop and Gurney flap. Fixed nose droop is known to be very effective to improve pitching moment characteristics but may cause degeneration of aerodynamic lift at the same time. On the other hand, Gurney flap has the opposite characteristics. For fixed nose droop, location and angle are chosen as design variables, while length is defined as design variable for Gurney flap. Higher order response surface methodology and sensitivity based optimal design method are employed to handle highly nonlinear problem such as dynamic stall. Optimal design has been performed so that lift and pitching moment are simultaneously improved. The design results show that aerodynamic characteristics can be remarkably improved through present design approach and the present passive control method is as good as active control method which combines variable nose droop and Gurney flap.

An Improved Reliability-Based Design Optimization using Moving Least Squares Approximation (이동최소자승근사법을 이용한 개선된 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.45-52
    • /
    • 2009
  • In conventional structural design, deterministic optimization which satisfies codified constraints is performed to ensure safety and maximize economical efficiency. However, uncertainties are inevitable due to the stochastic nature of structural materials and applied loads. Thus, deterministic optimization without considering these uncertainties could lead to unreliable design. Recently, there has been much research in reliability-based design optimization (RBDO) taking into consideration both the reliability and optimization. RBDO involves the evaluation of probabilistic constraint that can be estimated using the RIA (Reliability Index Approach) and the PMA(Performance Measure Approach). It is generally known that PMA is more stable and efficient than RIA. Despite the significant advancement in PMA, RBDO still requires large computation time for large-scale applications. In this paper, A new reliability-based design optimization (RBDO) method is presented to achieve the more stable and efficient algorithm. The idea of the new method is to integrate a response surface method (RSM) with PMA. For the approximation of a limit state equation, the moving least squares (MLS) method is used. Through a mathematical example and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Process Conditions Optimizing the Yield of Power Semiconductors (전력반도체의 수율향상을 위한 최적 공정조건 결정에 관한 연구)

  • Koh, Kwan Ju;Kim, Na Yeon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.725-737
    • /
    • 2019
  • Purpose: We used a data analysis method to improve semiconductor manufacturing yield. We defined and optimized important factors and applied our findings to a real-world process. The semiconductor industry is very cost-competitive; our findings are useful. Methods: We collected data on 15 independent variables and one dependent variable (yield); we removed outliers and missing values. Using SPSS Modeler ver. 18.0, we analyzed the data both continuously and discretely and identified common factors. Results: We optimized two independent variables in terms of process conditions; yield improved. We used DS Leak software to model netting and Contact CD software to model meshes. DS Leak shows smaller the better characterisrics and Contact CD shows normal the best characteristics Conclusion: Various efforts have been made to improve semiconductor manufacturing yields, and many studies have created models or analyzed various characteristics. We not only defined important factors but also showed how to control processing to improve semiconductor yield.

Design Optimization of UMPC Keypad Using Human Finger (인체 손가락 해석을 통한 UMPC 키패드 설계 최적화)

  • Park, Soo-Hyun;Kim, Kwang-Il;Yang, Tae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.544-547
    • /
    • 2008
  • As the mobile electronic product is getting slimmer and smaller, the necessity of keypad is being increased. But the possibility of mis-typing keypad is increased rapidly due to the integrated keypad in the small mobile product. The business division has not considered the methodology of keypad design essentially. In this paper, analysis method and design evaluation standard to reduce the mis-typing of UMPC(Ultra Mobile Personal Computer) is suggested. First, the finite element analysis model and the biomechanical human body model are implemented in order to simulate the exact contact characteristic between finger and keypad. The reliability of analysis model is guaranteed by the comparison of the contact pressure between analysis result and experiment result of the pressure sensor. The design optimization of key shape and layout is derived through the response surface method. The prototype model is produced with the optimized design of keypad, and then it verified the advanced function with user mis-typing detection test. The optimized keypad design reduced the mis-typing ratio from 35% of existing model to 75 of proposed model. If this paper is widely applied to not only UMPC but also the other electronic products, the emotional quality of all products could be improved considerably.

  • PDF

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

A Study on the Process Optimization of Microcellular Foaming Injection Molded Ceiling Air-Conditioner 4-Way Panel (초미세발포 사출성형을 이용한 천정형 에어컨 4-way 판넬의 공정 최적화에 관한 연구)

  • Kim, Joo-Kwon;Lee, Jung-Hee;Kim, Jong-Sun;Lee, Jun-Han;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.98-104
    • /
    • 2018
  • Deflected 4-way panels of ceiling air conditioners produced by injection molding process have caused dew condensation at the edge of products. In order to prevent this drawback with reducing weight and deformation, this study proposed renovated process adopting microcellular foaming. According to results from 2-sample t-test and analysis of variance(ANOVA), the critical factors affecting weight were melt temperature and injection speed. In addition, the vital effects on deformation were structure at the edge, mold temperature and cooling time. Optimal conditions of these parameters were derived by regressive analysis with CAE and response surface method(RSM), and then applied to an actual design and process stage to analyze performance. As a results, it clearly showed that new process improved process capability as well as reduced both weight and deformation by 18.8% and 71.9% respectively compared to the conventional method.

Quantification of Reactor Safety Margins for Large Break LOCA with Application of Realistic Evaluation Methodology (최적평가 방법론의 적용에 의한 대형냉각재 상실사고시의 원자로 안전여유도의 정량화)

  • B.D. Chung;Lee, Y.J.;T.S. Hwang;Lee, W.J.;Lee, S.Y.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 1994
  • The USNRC issued a revised ECCS rule that allows the use of best estimate computer codes for safety analysis. The rule also requires an estimation of uncertainty in calculated system response when applying the best estimate computer codes. A practical realistic evaluation methodology to evaluate the ECCS performance that satisfies the requirements of the ECCS rule has been developed and this paper describes the application of new realistic evaluation methodology to large break LOCA for, the demonstration of the new methodology. The computer code RELAP5/MOD3/KAERI, which was improved from RELAP5/MOD3.1, was used as the best estimate code in the application. The uncertainty of the code was evaluated by assessing several separate and integral effect tests, and for the application to actual plant Kori 3 & 4 was selected as the reference plant. Response surfaces for blowdown and reflood PCTs were generated from the results of the sensitivity analyses and probability distribution functions were established by random sampling or Monte-Carlo method for each response surface. Final uncertainties were quantified at 95% probability level and safety margins for large break LOCA were discussed.

  • PDF

EFFECT OF DIFFERENT SURFACE TREATMENTS TO INCREASE BIOCOMPATIBILITY OF DENTAL IMPLANT (임플랜트 표면처리가 생체활성에 미치는 영향)

  • Lee, Ho-Jin;Song, Kwang-Yeob;Yoon, Tae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.594-605
    • /
    • 2006
  • Statement of problem: Modification of titanium implant surface has potential to ensure clinically favorable performance that several surface modification technologies have been introduced. Among the methods. anodizing method and sol-gel hydroxyapatite coating method have gained much interest due to its roughness and chemical composition of the coating layer, but more of its biocompatibility result is required. Purpose : The purpose of this study was to compare bone-implant interface shear strength of four different surface treated implants as time elapsed. Resonance frequency analysis(RFA) and removal torque measurement methods were employed to measure implant stability at one week and six week after implantation. Material and method: A total of 80 screw-shaped implant [20 machined, 20 resorbable media blasted(RBM), 20 anodized, and 20 anodized+hydroxyapatite sol-gel coated] were prepared, and one of each group was implanted in the tibia of a New Zealand white rabbit that total 20 of them were used. In order to test the implant stability and implant-tissue interface contact changing in the bone bed, each 10 rabbit were sacrificed 1 week and 6 week later while resonance frequency and removal torque were measured. One-way analysis of variance and the Tukey test were used for statistical analysis. Results : The results were as follows. 1. There was no statistically significant difference of implant stability quotients(ISQ) value in RFA between individual groups after 1 week of implantation and 6 weeks(p>0.05). But, there was statistically significant increase of ISQ value in 6 weeks group compared to 1 week group(p<0.05). 2. There was no statistically significant difference in removal torque analysis between individual groups after 1 week of implantation and 6 weeks(p>0.05). but there was statistically significant increase in all 4 groups after 6 weeks compared to 1 week later(p<0.05). 3. There was no statistically significant difference in removal torque analysis between anodized group and HA coating after anodic oxidation 6 weeks later(p>0.05), but significant difference was appeared in both groups compared to RBM group and smooth-machined group(p<0.05). Conclusions : It can be suggested that changes in surface characteristics affect bone reactions. Anodized and anodized+hydroxyapatite sol-gel coating showed significantly improved bone tissue response to implants, but further study on the effect of hydroxyapatite dissolution is needed.

Arthroscopic-assisted Reduction and Percutaneous Screw Fixation for Glenoid Fracture with Scapular Extension

  • Kim, Se Jin;Lee, Sung Hyun;Jung, Dae Woong;Kim, Jeong Woo
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2017
  • Background: To evaluate the clinical and functional outcomes of arthroscopic-assisted reduction and percutaneous screw fixation for glenoid fractures with scapular extension, and investigate the radiologic and clinical benefits from the results. Methods: We evaluated patients treated with arthroscopic-assisted reduction and percutaneous screw fixation for glenoid fractures with scapular extension from November 2008 to September 2015. Fractures with displacement exceeding one-fourth of the anterior-articular surface or more than one-third of the posterior-articular surface in radiographic images were treated by surgery. Clinical assessment was conducted based on range of motion, Rowe score, and Constant score of injured arm and uninjured arm at last follow-up. Results: Fifteen patients with Ideberg classification grade III, IV, and V glenoid fracture who underwent arthroscopic-assisted reduction using percutaneous screw fixation were retrospectively enrolled. There were no differences in clinical outcomes at final follow-up compared to uninjured arm. Bone union was seen in all cases within five months, and the average time to bone union was 15.2 weeks. Ankylosis in one case was observed as a postoperative complication, but the symptoms improved in response to physical therapy for six months. There was no failure of fixation and neurovascular complication. Conclusions: We identified acceptable results upon radiological and clinical assessment for the arthroscopic-assisted reduction and percutaneous fixation. For this reason, we believe the method is favorable for the treatment of Ideberg type III, IV, and V glenoid fractures. Restoration of the articular surface is considered to be more important than reduction of fractures reduction of the scapula body.

Enhancing streamflow prediction skill of WRF-Hydro-CROCUS with DDS calibration over the mountainous basin.

  • Mehboob, Muhammad Shafqat;Lee, Jaehyeong;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.137-137
    • /
    • 2021
  • In this study we aimed to enhance streamflow prediction skill of a land-surface hydrological model, WRF-Hydro, over one of the snow dominated catchments lies in Himalayan mountainous range, Astore. To assess the response of the Himalayan river flows to climate change is complex due to multiple contributors: precipitation, snow, and glacier melt. WRF-Hydro model with default glacier module lacks generating streamflow in summer period but recently developed WRF-Hydro-CROCUS model overcomes this issue by melting snow/ice from the glaciers. We showed that by implementing WRF-Hydro-CROCUS model over Astore the results were significantly improved in comparison to WRF-Hydro with default glacier module. To constraint the model with the observed streamflow we chose 17 sensitive parameters of WRF-Hydro, which include groundwater parameters, surface runoff parameters, channel parameters, soil parameters, vegetation parameters and snowmelt parameters. We used Dynamically Dimensioned Search (DDS) method to calibrate the daily streamflow with the Nash-Sutcliffe efficiency (NSE) being greater than 0.7 both in calibration (2009-2010) and validation (2011-2013) period. Based on the number of iterations per parameter, we found that the parameters related to channel and runoff process are most sensitive to streamflow. The attempts to address the responses of the streamflows to climate change are still very weak and vague especially northwest Himalayan Part of Pakistan and this study is one of a few successful applications of process-based land-surface hydrologic model over this mountainous region of UIB that can be utilized to have an in-depth understanding of hydrological responses of climate change.

  • PDF