• 제목/요약/키워드: Improved LDA Model

검색결과 16건 처리시간 0.022초

Hot Topic Discovery across Social Networks Based on Improved LDA Model

  • Liu, Chang;Hu, RuiLin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3935-3949
    • /
    • 2021
  • With the rapid development of Internet and big data technology, various online social network platforms have been established, producing massive information every day. Hot topic discovery aims to dig out meaningful content that users commonly concern about from the massive information on the Internet. Most of the existing hot topic discovery methods focus on a single network data source, and can hardly grasp hot spots as a whole, nor meet the challenges of text sparsity and topic hotness evaluation in cross-network scenarios. This paper proposes a novel hot topic discovery method across social network based on an im-proved LDA model, which first integrates the text information from multiple social network platforms into a unified data set, then obtains the potential topic distribution in the text through the improved LDA model. Finally, it adopts a heat evaluation method based on the word frequency of topic label words to take the latent topic with the highest heat value as a hot topic. This paper obtains data from the online social networks and constructs a cross-network topic discovery data set. The experimental results demonstrate the superiority of the proposed method compared to baseline methods.

MeSH 기반의 LDA 토픽 모델을 이용한 검색어 확장 (The MeSH-Term Query Expansion Models using LDA Topic Models in Health Information Retrieval)

  • 유석진
    • 한국도서관정보학회지
    • /
    • 제52권1호
    • /
    • pp.79-108
    • /
    • 2021
  • 헬스 분야에서 정보 검색의 어려움 중의 하나는 일반 사용자들이 전문적인 용어들을 이해하기가 어렵다는 점이다. 헬스와 관련된 전문 용어들은 일반 사용자들이 검색어로 사용하기 어렵기 때문에 이러한 전문 용어들이 자동적으로 검색어에 더해질 수 있다면 좀 더 검색의 효과를 높일 수 있을 것이다. 제안된 검색어 확장 모델은 전문 용어를 포함하는 MeSH(Medical Subject Headings)를 검색어 확장을 위한 단어 후보 군으로 이용하였다. 문서들은 MeSH용어들로 표현이 되고 이렇게 표현된 문서들의 집합에 대해서 LDA(Latent Dirichlet Analysis) 토픽들이 생성된 후, (검색어+초기 검색어에 의해 검색된 상위 k개 문서들)에 연관된 토픽 단어들이 원래의 검색어를 확장하는 데 쓰여졌다. MeSH로 구성된 토픽 단어들은 임의로 정해진 토픽 확률 임계값과 토픽을 구성하는 단어의 확률 임계값보다 높았을 때 초기의 검색어에 포함되었다. 특정수의 토픽을 갖는 LDA 모델에서 이러한 적절한 임계값의 설정을 통해 선택된 토픽 단어들은 검색어 확장에 이용되어 검색시에 infAP(inferred Average Precision)와 infNDCG(inferred Normalized Discounted Cumulative Gain)를 높이는데 효과적으로 작용하였다. 또한 토픽 확률값과 토픽 단어의 확률값을 곱하여 계산된 토픽 단어의 스코어가 높은 상위 k개의 단어를 검색어를 확장하는 데 이용하였을 때에도 검색의 성능이 향상될 수 있음을 확인하였다.

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

A standardization model based on image recognition for performance evaluation of an oral scanner

  • Seo, Sang-Wan;Lee, Wan-Sun;Byun, Jae-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권6호
    • /
    • pp.409-415
    • /
    • 2017
  • PURPOSE. Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. MATERIALS AND METHODS. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. RESULTS. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. CONCLUSION. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.

Learning Probabilistic Kernel from Latent Dirichlet Allocation

  • Lv, Qi;Pang, Lin;Li, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2527-2545
    • /
    • 2016
  • Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval and related applications. A number of works, e.g. kernel method and metric learning, have been contributed to this problem. The challenge of similarity learning is to find a similarity robust to intra-class variance and simultaneously selective to inter-class characteristic. We observed that, the similarity measure can be improved if the data distribution and hidden semantic information are exploited in a more sophisticated way. In this paper, we propose a similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA and constructs kernel using the parameters and variables of the trained model. Then, the unknown kernel parameters are learned by a discriminative learning approach. The main contributions of the proposed method are twofold: (1) the method is computationally efficient and scalable since the parameters in kernel are determined in a staged way; (2) the method exploits data distribution and semantic level hidden information by means of LDA. To evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and for text categorization on four popular data sets. The results show the competitive performance of our method.

WV-BTM: SNS 단문의 주제 분석을 위한 토픽 모델 정확도 개선 기법 (WV-BTM: A Technique on Improving Accuracy of Topic Model for Short Texts in SNS)

  • 송애린;박영호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.51-58
    • /
    • 2018
  • SNS의 사용자와 데이터량이 폭발적으로 증가함에 따라, SNS 빅 데이터를 기반으로 한 연구들이 활발히 진행되고 있다. 특히 소셜 마이닝 분야에서는 비 분류된 대용량 SNS 텍스트 데이터로부터 각 텍스트 별 유사성을 파악하고, 그로부터 트렌드를 추출하기 위해 대표적인 토픽 모델 기법인 LDA를 사용한다. 그러나 LDA는 단문 데이터에 대하여 비 빈발 단어 출현으로 인한 의미 희박성(semantic sparsity)으로 인해 양질의 주제 추론이 어렵다는 한계를 가진다. BTM 연구는 이와 같은 LDA의 한계점을 두 단어의 조합을 통해 개선하였으나, BTM 또한 조합된 단어 중 높은 빈도수의 단어에 더 큰 영향을 받아 각 주제와의 연관성을 고려한 가중치 계산이 불가능하다는 한계점을 지닌다. 본 논문은 단어 간의 의미적 연관성을 반영함으로써 기존 연구 BTM의 정확도를 개선하는 방안을 모색한다.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

데이터 증가를 통한 선형 모델의 일반화 성능 개량 (중심극한정리를 기반으로) (Improvement of generalization of linear model through data augmentation based on Central Limit Theorem)

  • 황두환
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.19-31
    • /
    • 2022
  • 기계학습 모델 구축 간 트레이닝 데이터를 활용하며, 훈련 간 사용되지 않은 테스트 데이터를 활용하여 모델의 정확도와 일반화 성능을 판단한다. 일반화 성능이 낮은 모델의 경우 새롭게 받아들이게 되는 데이터에 대한 예측 정확도가 현저히 감소하게 되며 이러한 현상을 두고 모델이 과적합 되었다고 한다. 본 연구는 중심극한정리를 기반으로 데이터를 생성 및 기존의 훈련용 데이터와 결합하여 새로운 훈련용 데이터를 구성하고 데이터의 정규성을 증가시킴과 동시에 이를 활용하여 모델의 일반화 성능을 증가시키는 방법에 대한 것이다. 이를 위해 중심극한정리의 성질을 활용해 데이터의 각 특성별로 표본평균 및 표준편차를 활용하여 데이터를 생성하였고, 새로운 훈련용 데이터의 정규성 증가 정도를 파악하기 위하여 Kolmogorov-Smirnov 정규성 검정을 진행한 결과, 새로운 훈련용 데이터가 기존의 데이터에 비해 정규성이 증가하였음을 확인할 수 있었다. 일반화 성능은 훈련용 데이터와 테스트용 데이터에 대한 예측 정확도의 차이를 통해 측정하였다. 새롭게 생성된 데이터를 K-Nearest Neighbors(KNN), Logistic Regression, Linear Discriminant Analysis(LDA)에 적용하여 훈련시키고 일반화 성능 증가정도를 파악한 결과, 비모수(non-parametric) 기법인 KNN과 모델 구성 간 정규성을 가정으로 갖는 LDA의 경우에 대하여 일반화 성능이 향상되었음을 확인할 수 있었다.

토픽모델링과 시계열 분석을 활용한 클라우드 보안 분야 연구 동향 분석 : NTIS 과제를 중심으로 (Analysis of Research Trends in Cloud Security Using Topic Modeling and Time-Series Analysis: Focusing on NTIS Projects)

  • 윤선영;조남옥
    • 융합보안논문지
    • /
    • 제24권2호
    • /
    • pp.31-38
    • /
    • 2024
  • 최근 클라우드 서비스 사용이 확산하면서 클라우드 보안의 중요성이 증가하였다. 본 연구의 목적은 클라우드 보안 분야의 최근 연구 동향을 분석하고 시사점을 도출하는 것이다. 이를 위해 2010년부터 2023년까지 국가과학기술지식정보서비스(NTIS)에서 제공하는 R&D 과제 데이터를 활용하여 클라우드 보안 연구 동향을 분석하였다. LDA 토픽모델링과 ARIMA 시계열 분석을 통해 클라우드 보안 연구의 핵심 토픽 15개를 도출하였으며, AI를 활용한 보안 기술, 개인정보 및 데이터보안, IoT 환경에서의 보안 문제 해결이 연구에서 중요한 영역임을 확인했다. 이는 클라우드 기술의 확산과 기반 시설의 디지털 전환으로 인해 발생할 수 있는 보안 위협에 대응하기 위해 관련 연구가 필요함을 시사한다. 도출된 토픽들을 기반으로 클라우드 보안 분야를 네 가지 범주로 나누어 기술참조모델을 정의하였으며, 전문가 인터뷰를 통해 해당 기술참조모델을 개선하였다. 본 연구는 클라우드 보안 발전의 방향을 제시하며 학계 및 산업계에 미래 연구와 투자에 대한 중요한 지침을 제공할 것으로 기대된다.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.