• 제목/요약/키워드: Improved IAFC Model

검색결과 4건 처리시간 0.017초

개선된 IAFC 모델을 이용한 영상 대비 향상 기법 (An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model)

  • 이금분;김용수
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.777-781
    • /
    • 2001
  • 본 논문은 저대비 영상을 처리하여 보다 향상된 영상을 얻고자 펴지 함소와 개선된 IAFC 모델을 적용한 영상 대비 향상 기법을 제안한다. 저대비에 의한 영상 정보의 불확실성이 무작위성보다 명암도의 모호성과 퍼지성에 근거한다는 점에서 퍼지 집합이론을 영상 향상 기법을 개발하는데 적용한다. 영상 향상의 단계를 퍼지화, 대비 강화 연산, 비퍼지화 단계로 나눠볼 수 있으며, 퍼지화 및 비퍼지화 과정에서 적절한 교차점 선택이 요구되고 이때 개선된 IAFC 모델을 적용하여 최적의 교차점을 선택한다. 데이터 대한 정신없이 임계 파라미터를 조정함으로써 클러스터링을 할 수 있는 개선된 IAFC 모델로 두 클래스만을 형성하도록 하여 명암도의 애매성이 최대가 되는 교차점을 찾아 대비를 강화시킨다. 대비 향상의 정략적 측정을 위해 퍼지성 지수를 사용하며 히스토그램 균등화 기법을 사용한 대비 향상 결과와 비교한다. 저대비 영상에 대해 최적의 교차점의 위치를 정하는 제안한 기법의 결과가 많은 실험영상을 통해 우수함을 보여주고 있다.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

IAFC 모델을 이용한 영상 대비 향상 기법 (An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model)

  • 이금분;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF