• Title/Summary/Keyword: Improved Convolutional Neural Network

Search Result 171, Processing Time 0.034 seconds

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films (스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구)

  • Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

Audio Event Detection Based on Attention CRNN (Attention CRNN에 기반한 오디오 이벤트 검출)

  • Kwak, Jin-Yeol;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.465-472
    • /
    • 2020
  • Recently, various deep neural networks based methods have been proposed for audio event detection. In this study, we improved the performance of audio event detection by adopting an attention approach to a baseline CRNN. We applied context gating at the input of the baseline CRNN and added an attention layer at the output. We improved the performance of the attention based CRNN by using the audio data of strong labels in frame units as well as the data of weak labels in clip levels. In the audio event detection experiments using the audio data from the Task 4 of the DCASE 2018/2019 Challenge, we could obtain maximally a 66% relative increase in the F-score in the proposed attention based CRNN compared with the baseline CRNN.

Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network (1D-CNN을 이용한 항만내 선박 이동시간 예측)

  • Sang-Lok Yoo;Kwang-Il Ki;Cho-Young Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.275-276
    • /
    • 2022
  • VTS operators instruct ships to wait for entry and departure to sail in one-way to prevent ship collision accidents in ports with narrow routes. Currently, the instructions are not based on scientific and statistical data. As a result, there is a significant deviation depending on the individual capability of the VTS operators. Accordingly, this study built a 1d-convolutional neural network model by collecting ship and weather data to predict the exact travel time for ship entry/departure waiting for instructions in the port. It was confirmed that the proposed model was improved by more than 4.5% compared to other ensemble machine learning models. Through this study, it is possible to predict the time required to enter and depart a vessel in various situations, so it is expected that the VTS operators will help provide accurate information to the vessel and determine the waiting order.

  • PDF

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

A Framework for Facial Expression Recognition Combining Contextual Information and Attention Mechanism

  • Jianzeng Chen;Ningning Chen
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.535-549
    • /
    • 2024
  • Facial expressions (FEs) serve as fundamental components for human emotion assessment and human-computer interaction. Traditional convolutional neural networks tend to overlook valuable information during the FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deep learning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanism for precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone network and introduced an improved group convolutional channel attention (GCCA) module in each block to emphasize the crucial expression features. A partial decoder was added at the end of the backbone network to facilitate the fusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the model to refine details layer-by-layer while introducing contextual information and extracting richer expression features. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss, creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectiveness of our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and 98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability.

Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning (심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법)

  • Soonkyu Jeong;Mooncheol Won
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

Number Plate Detection with a 2-step Neural Network Approach for Mobile Devices (차량 번호판 검출을 위한 2단계 합성곱 신경망 접근법)

  • Gerber, Christian;Chung, Mokdong
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.879-881
    • /
    • 2014
  • A method is proposed to achieve improved number plate detection for mobile devices by applying a two-step convolutional neural network (CNN) approach. Supervised CNN-verified car detection is processed first. In the second step, we apply the detected car regions to the second CNN-verifier for number plate detection. Since mobile devices are limited in computing power, we propose a fast method to detect number plates. We expect to use in the field of intelligent transportation systems (ITS).

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

Classifying Images of The ASL Alphabet using Dual Homogeneous CNNs Structure (이중 동종 CNN 구조를 이용한 ASL 알파벳의 이미지 분류)

  • Erniyozov Shokhrukh;Man-Sung Kwan;Seong-Jong Park;Gwang-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.449-458
    • /
    • 2023
  • Many people think that sign language is only for people who are deaf and cannot speak, but of course it is necessary for people who want to talk with them. One of the biggest challenges in ASL(American Sign Language) alphabet recognition is the high inter-class similarities and high intra-class variance. In this paper, we proposed an architecture that can overcome these two problems, which performs similarity learning to reduces inter-class similarities and intra-class variance between images. The proposed architecture consists of the same convolutional neural network with a double configuration that shares parameters (weights and biases) and also applies the Keras API to reduce similarity learning and variance through this pathway. The similarity learning results the use of the dual CNN shows that the accuracy is improved by reducing the similarity and variability between classes by not including the poor results of the two classes.