• Title/Summary/Keyword: Improved Convolutional Neural Network

Search Result 171, Processing Time 0.035 seconds

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.

Image Quality Evaluation in Computed Tomography Using Super-resolution Convolutional Neural Network (Super-resolution Convolutional Neural Network를 이용한 전산화단층상의 화질 평가)

  • Nam, Kibok;Cho, Jeonghyo;Lee, Seungwan;Kim, Burnyoung;Yim, Dobin;Lee, Dahye
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • High-quality computed tomography (CT) images enable precise lesion detection and accurate diagnosis. A lot of studies have been performed to improve CT image quality while reducing radiation dose. Recently, deep learning-based techniques for improving CT image quality have been developed and show superior performance compared to conventional techniques. In this study, a super-resolution convolutional neural network (SRCNN) model was used to improve the spatial resolution of CT images, and image quality according to the hyperparameters, which determine the performance of the SRCNN model, was evaluated in order to verify the effect of hyperparameters on the SRCNN model. Profile, structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and full-width at half-maximum (FWHM) were measured to evaluate the performance of the SRCNN model. The results showed that the performance of the SRCNN model was improved with an increase of the numbers of epochs and training sets, and the learning rate needed to be optimized for obtaining acceptable image quality. Therefore, the SRCNN model with optimal hyperparameters is able to improve CT image quality.

Simulation and Experimental Studies of Super Resolution Convolutional Neural Network Algorithm in Ultrasound Image (초음파 영상에서의 초고분해능 합성곱 신경망 알고리즘의 시뮬레이션 및 실험 연구)

  • Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.693-699
    • /
    • 2023
  • Ultrasound is widely used in the medical field for non-destructive and non-invasive disease diagnosis. In order to improve the disease diagnosis accuracy of diagnostic medical images, improving spatial resolution is a very important factor. In this study, we aim to model the super resolution convolutional neural network (SRCNN) algorithm in ultrasound images and analyze its applicability in the medical diagnostic field. The study was conducted as an experimental study using Field II simulation and open source clinical liver hemangioma ultrasound imaging. The proposed SRCNN algorithm was modeled so that end-to-end learning can be applied from low resolution (LR) to high resolution. As a result of the simulation, we confirmed that the full width at half maximum in the phantom image using a Field II program was improved by 41.01% compared to LR when SRCNN was used. In addition, the peak to signal to noise ratio (PSNR) and structural similarity index (SSIM) evaluation results showed that SRCNN had the excellent value in both simulated and real liver hemangioma ultrasound images. In conclusion, the applicability of SRCNN to ultrasound images has been proven, and we expected that proposed algorithm can be used in various diagnostic medical fields.

Performance Enhancement of Automatic Wood Classification of Korean Softwood by Ensembles of Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Yang, Sang-Yun;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.265-276
    • /
    • 2019
  • In our previous study, the LeNet3 model successfully classified images from the transverse surfaces of five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch). However, a practical limitation exists in our system stemming from the nature of the training images obtained from the transverse plane of the wood species. In real-world applications, it is necessary to utilize images from the longitudinal surfaces of lumber. Thus, we improved our model by training it with images from the longitudinal and transverse surfaces of lumber. Because the longitudinal surface has complex but less distinguishable features than the transverse surface, the classification performance of the LeNet3 model decreases when we include images from the longitudinal surfaces of the five Korean softwood species. To remedy this situation, we adopt ensemble methods that can enhance the classification performance. Herein, we investigated the use of ensemble models from the LeNet and MiniVGGNet models to automatically classify the transverse and longitudinal surfaces of the five Korean softwoods. Experimentally, the best classification performance was achieved via an ensemble model comprising the LeNet2, LeNet3, and MiniVGGNet4 models trained using input images of $128{\times}128{\times}3pixels$ via the averaging method. The ensemble model showed an F1 score greater than 0.98. The classification performance for the longitudinal surfaces of Korean pine and Korean red pine was significantly improved by the ensemble model compared to individual convolutional neural network models such as LeNet3.

Cascade Network Based Bolt Inspection In High-Speed Train

  • Gu, Xiaodong;Ding, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3608-3626
    • /
    • 2021
  • The detection of bolts is an important task in high-speed train inspection systems, and it is frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt inspection system lies in small sample defect detection, which makes the end-to-end network ineffective. In this paper, the problem is resolved in two stages, which includes the detection network and cascaded classification networks. For small bolt detection, all bolts including defective bolts and normal bolts are put together for conducting annotation training, a new loss function and a new boundingbox selection based on the smallest axis-aligned convex set are proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of the various bolts. The average precision has been greatly improved on PASCAL VOC, MS COCO and actual data set. After that, the Siamese network is employed for estimating the status of the bolts. Using the convolutional Siamese network, we are able to get strong results on few-shot classification. Extensive experiments and comparisons on actual data set show that the system outperforms state-of-the-art algorithms in bolt inspection.

2D Emotion Classification using Short-Time Fourier Transform of Pupil Size Variation Signals and Convolutional Neural Network (동공크기 변화신호의 STFT와 CNN을 이용한 2차원 감성분류)

  • Lee, Hee-Jae;Lee, David;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1646-1654
    • /
    • 2017
  • Pupil size variation can not be controlled intentionally by the user and includes various features such as the blinking frequency and the duration of a blink, so it is suitable for understanding the user's emotional state. In addition, an ocular feature based emotion classification method should be studied for virtual and augmented reality, which is expected to be applied to various fields. In this paper, we propose a novel emotion classification based on CNN with pupil size variation signals which include not only various ocular feature information but also time information. As a result, compared to previous studies using the same database, the proposed method showed improved results of 5.99% and 12.98% respectively from arousal and valence emotion classification.

Korean License Plate Recognition Using CNN (CNN 기반 한국 번호판 인식)

  • Hieu, Tang Quang;Yeon, Seungho;Kim, Jaemin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1337-1342
    • /
    • 2019
  • The Automatic Korean license plate recognition (AKLPR) is used in many fields. For many applications, high recognition rate and fast processing speed of ALPR are important. Recent advances in deep learning have improved the accuracy and speed of object detection and recognition, and CNN (Convolutional Neural Network) has been applied to ALPR. The ALPR is divided into the stage of detecting the LP region and the stage of detecting and recognizing the character in the LP region, and each step is implemented with separate CNN. In this paper, we propose a single stage CNN architecture to recognize license plate characters at high speed while keeping high recognition rate.

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Pest Control System using Deep Learning Image Classification Method

  • Moon, Backsan;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • In this paper, we propose a layer structure of a pest image classifier model using CNN (Convolutional Neural Network) and background removal image processing algorithm for improving classification accuracy in order to build a smart monitoring system for pine wilt pest control. In this study, we have constructed and trained a CNN classifier model by collecting image data of pine wilt pest mediators, and experimented to verify the classification accuracy of the model and the effect of the proposed classification algorithm. Experimental results showed that the proposed method successfully detected and preprocessed the region of the object accurately for all the test images, resulting in showing classification accuracy of about 98.91%. This study shows that the layer structure of the proposed CNN classifier model classified the targeted pest image effectively in various environments. In the field test using the Smart Trap for capturing the pine wilt pest mediators, the proposed classification algorithm is effective in the real environment, showing a classification accuracy of 88.25%, which is improved by about 8.12% according to whether the image cropping preprocessing is performed. Ultimately, we will proceed with procedures to apply the techniques and verify the functionality to field tests on various sites.