• Title/Summary/Keyword: Improved Convolutional Neural Network

Search Result 171, Processing Time 0.032 seconds

I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks (I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해)

  • Kim, Jeong-Hoon;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.

Uniform Motion Deblurring using Shock Filter and Convolutional Neural Network (쇼크 필터와 합성곱 신경망 기반의 균일 모션 디블러링 기법)

  • Jeong, Minso;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.484-494
    • /
    • 2018
  • The uniform motion blur removing algorithm of Cho et al. has the problem that the edge region of the image cannot be restored clearly. We propose the effective algorithm to overcome this problem by using shock filter that reconstructs a blurred step signal into a sharp edge, and convolutional neural network (CNN) that learns by extracting features from the image. Then uniform motion blur kernel is estimated from the latent sharp image to remove blur in the image. The proposed algorithm improved the disadvantages of the conventional algorithm by reconstructing the latent sharp image using shock filter and CNN. Through the experimental results, it was confirmed that the proposed algorithm shows excellent reconstruction performance in objective and subjective image quality than the conventional algorithm.

Techniques for Performance Improvement of Convolutional Neural Networks using XOR-based Data Reconstruction Operation (XOR연산 기반의 데이터 재구성 기법을 활용한 컨볼루셔널 뉴럴 네트워크 성능 향상 기법)

  • Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.193-198
    • /
    • 2020
  • The various uses of the Convolutional Neural Network technology are accelerating the evolution of the computing area, but the opposite is causing serious hardware performance shortages. Neural network accelerators, next-generation memory device technologies, and high-bandwidth memory architectures were proposed as countermeasures, but they are difficult to actively introduce due to the problems of versatility, technological maturity, and high cost, respectively. This study proposes DRAM-based main memory technology that enables read operations to be completed without waiting until the end of the refresh operation using pre-stored XOR bit values, even when the refresh operation is performed in the main memory. The results showed that the proposed technique improved performance by 5.8%, saved energy by 1.2%, and improved EDP by 10.6%.

A Deep Convolutional Neural Network with Batch Normalization Approach for Plant Disease Detection

  • Albogamy, Fahad R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.51-62
    • /
    • 2021
  • Plant disease is one of the issues that can create losses in the production and economy of the agricultural sector. Early detection of this disease for finding solutions and treatments is still a challenge in the sustainable agriculture field. Currently, image processing techniques and machine learning methods have been applied to detect plant diseases successfully. However, the effectiveness of these methods still needs to be improved, especially in multiclass plant diseases classification. In this paper, a convolutional neural network with a batch normalization-based deep learning approach for classifying plant diseases is used to develop an automatic diagnostic assistance system for leaf diseases. The significance of using deep learning technology is to make the system be end-to-end, automatic, accurate, less expensive, and more convenient to detect plant diseases from their leaves. For evaluating the proposed model, an experiment is conducted on a public dataset contains 20654 images with 15 plant diseases. The experimental validation results on 20% of the dataset showed that the model is able to classify the 15 plant diseases labels with 96.4% testing accuracy and 0.168 testing loss. These results confirmed the applicability and effectiveness of the proposed model for the plant disease detection task.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Entity Matching Method Using Semantic Similarity and Graph Convolutional Network Techniques (의미적 유사성과 그래프 컨볼루션 네트워크 기법을 활용한 엔티티 매칭 방법)

  • Duan, Hongzhou;Lee, Yongju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.801-808
    • /
    • 2022
  • Research on how to embed knowledge in large-scale Linked Data and apply neural network models for entity matching is relatively scarce. The most fundamental problem with this is that different labels lead to lexical heterogeneity. In this paper, we propose an extended GCN (Graph Convolutional Network) model that combines re-align structure to solve this lexical heterogeneity problem. The proposed model improved the performance by 53% and 40%, respectively, compared to the existing embedded-based MTransE and BootEA models, and improved the performance by 5.1% compared to the GCN-based RDGCN model.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Gait Recognition Based on GF-CNN and Metric Learning

  • Wen, Junqin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1105-1112
    • /
    • 2020
  • Gait recognition, as a promising biometric, can be used in video-based surveillance and other security systems. However, due to the complexity of leg movement and the difference of external sampling conditions, gait recognition still faces many problems to be addressed. In this paper, an improved convolutional neural network (CNN) based on Gabor filter is therefore proposed to achieve gait recognition. Firstly, a gait feature extraction layer based on Gabor filter is inserted into the traditional CNNs, which is used to extract gait features from gait silhouette images. Then, in the process of gait classification, using the output of CNN as input, we utilize metric learning techniques to calculate distance between two gaits and achieve gait classification by k-nearest neighbors classifiers. Finally, several experiments are conducted on two open-accessed gait datasets and demonstrate that our method reaches state-of-the-art performances in terms of correct recognition rate on the OULP and CASIA-B datasets.

Facial Data Visualization for Improved Deep Learning Based Emotion Recognition

  • Lee, Seung Ho
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.2
    • /
    • pp.32-39
    • /
    • 2019
  • A convolutional neural network (CNN) has been widely used in facial expression recognition (FER) because it can automatically learn discriminative appearance features from an expression image. To make full use of its discriminating capability, this paper suggests a simple but effective method for CNN based FER. Specifically, instead of an original expression image that contains facial appearance only, the expression image with facial geometry visualization is used as input to CNN. In this way, geometric and appearance features could be simultaneously learned, making CNN more discriminative for FER. A simple CNN extension is also presented in this paper, aiming to utilize geometric expression change derived from an expression image sequence. Experimental results on two public datasets (CK+ and MMI) show that CNN using facial geometry visualization clearly outperforms the conventional CNN using facial appearance only.