• 제목/요약/키워드: Implantation of Interspinous Process

검색결과 4건 처리시간 0.017초

요추부 극돌기간 고정기구의 생체역학적 해석 (Biomechanical Analysis of Lumbar Interspinous Process Fixators)

  • 허순;박정홍;이성재;손권
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.195-202
    • /
    • 2006
  • The degenerative lumbar spinal stenosis (DLSS) is a disease inducing low back pain, leg pain, convulsion. numbness, and neurogenic claudication from compression of nerve root. Intervertebra fixation was reported to increase the degeneration of neighbor lesion after treatment. Recently, a new surgical technique of inserting a fixator between interspinous processes has been introduced. The purpose of this study is to design the interspinous process fixator with flexibility to complement the trouble of using fixator in DLSS. This study evaluated the existing fixator through the mechanical test and modified it using the finite element analysis (FEA). The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and calculated from the FEA in the biomechanical loading condition. Effects of variation in length and thickness were investigated to design an optimal fixator. Three prototypes were manufactured using FEA results. Mechanical tests under the biomechanical loading condition were performed to select the best one from these three. The selected fixator increased flexiblity by 32.9%.

요추부 극돌기간 고정기구의 생체역학적 해석과 소형화 및 유연성 향상 설계 (Biomechanical Analysis of Lumbar Interspinous Process Fixators and Design of Miniaturization and Advanced Flexibility)

  • 박정홍;허순;이성재;손권
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1509-1517
    • /
    • 2006
  • The intervertebral fusion was reported to increase the degeneration of the neighboring region. Recently, a new technique of inserting an interspinous process fixator has been introduced to minimize the degenerative change in the lumbar spine. This study analyzed biomechanical effects of the fixator in the lumbar spine, and designed a new prototype to improve flexibility of the fixator with a reduced size. The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and finite element analysis. A finite element lumbar model of L1 to L5 was constructed. The finite element model was used to analyze intervertebral fusion, insertion of a commercial fixator and a new prototype. The range of motion of intervertebral segments and pressures at vertebral discs were calculated from FEA. The results showed that the stiffness of the prototype was reduced by 32.9% than that of the commercial one.

Minimum 2-Year Follow-Up Result of Degenerative Spinal Stenosis Treated with Interspinous U ($Coflex^{TM}$)

  • Park, Seong-Cheol;Yoon, Sang-Hoon;Hong, Yong-Pyo;Kim, Ki-Jeong;Chung, Sang-Ki;Kim, Hyun-Jib
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권4호
    • /
    • pp.292-299
    • /
    • 2009
  • Objective : Clinical and radiological results of posterior dynamic stabilization using interspinous U (ISU, $Coflex^{TM}$, Paradigm Spine $Inc.^{(R)}$, NY, USA) were analyzed in comparison with posterior lumbar interbody fusion (PLIF) in degenerative lumbar spinal stenosis (LSS). Methods : A retrospective study was conducted for a consecutive series of 61 patients with degenerative LSS between May 2003 and December 2005. We included only the patients completed minimum 24 months follow up evaluation. Among them, 30 patients were treated with implantation of ISU after decompressive laminectomy (Group ISU) and 31 patients were treated with wide decompressive laminectomy and posterior lumbar interbody fusion (PLIF; Group PLIF). We evaluated visual analogue scale (VAS) and Oswestry Disability Index (ODI) for clinical outcomes (VAS, ODI), disc height ratio disc height (DH), disc height/vertebral body length ${\times}100$), static vertebral slip (VS) and depth of maximal radiolucent gap between ISU and spinous process) in preoperative, immediate postoperative and last follow up. Results : The mean age of group ISU ($66.2{\pm}6.7$ years) was 6.2 years older than the mean age of group PLIF ($60.4{\pm}8.1$ years; p=0.003). In both groups, clinical measures improved significantly than preoperative values (p<0.001). Operation time and blood loss was significantly shorter and lower in group ISU than group PLIF (p<0.001). In group ISU, the DH increased transiently in immediate postoperative period ($15.7{\pm}4.5%{\rightarrow}18.6{\pm}5.9%$), however decreased significantly in last follow up ($13.8{\pm}6.6%$, p=0.027). Vertebral slip (VS) of spondylolisthesis in group ISU increased during postoperative follow-up ($2.3{\pm}3.3{\rightarrow}8.7{\pm}6.2$, p=0.040). Meanwhile, the postoperatively improved DH and VS was maintained in group PLIF in last follow up. Conclusion : According to our result, implantation of ISU after decompressive laminectomy in degenerative LSS is less invasive and provides similar clinical outcome in comparison with the instrumented fusion. However, the device has only transient effect on the postoperative restoration of disc height and reduction of slip in spondylolisthesis. Therefore, in the biomechanical standpoint, it is hard to expect that use of Interspinous U in decompressive laminectomy for degenerative LSS had long term beneficial effect.

척추경나사못을 이용한 유합술과 동반 시술된 극돌기간 삽입기구의 생체역학적 연구 (Biomechanical Analysis of a Combined Interspinous Spacer with a Posterior Lumbar Fusion with Pedicle Screws)

  • 김영현;박은영;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.276-282
    • /
    • 2015
  • Recently, during the multi-level fusion with pedicle screws, interspinous spacer are sometimes substituted for the most superior level of the fusion in an attempt to reduce the number of fusion level and likelihood of degeneration process at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the interspinous spacer combined with posterior lumbar fusion with a previously-validated 3-dimensional FE model of the intact lumbar spine (L1-S1). The post-operative models were made by modifying the intact model to simulate the implantation of interspinous spacer and pedicle screws at the L3-4 and L4-5. Four different configurations of the post-op model were considered: (1) a normal spinal model; (2) Type 1, one-level fusion using posterior pedicle screws at the L4-5; (3) Type 2, two-level (L3-5) fusion; (4) Type 3, Type 1 plus Coflex$^{TM}$ at the L3-4. hybrid protocol (intact: 10 Nm) with a compressive follower load of 400N were used to flex, extend, axially rotate and laterally bend the FE model. As compared to the intact model, Type 2 showed the greatest increase in Range of motion (ROM) at the adjacent level (L2-3), followed Type 3, and Type 1 depending on the loading type. At L3-4, ROM of Type 2 was reduced by 34~56% regardless of loading mode, as compared to decrease of 55% in Type 3 only in extension. In case of normal bone strength model (Type 3_Normal), PVMS at the process and the pedicle remained less than 20% of their yield strengths regardless of loading, except in extension (about 35%). However, for the osteoporotic model (Type 3_Osteoporotic), it reached up to 56% in extension indicating increased susceptibility to fracture. This study suggested that substitution of the superior level fusion with the interspinous spacer in multi-level fusion may be able to offer similar biomechanical outcome and stability while reducing likelihood of adjacent level degeneration.