• Title/Summary/Keyword: Implant stability test

Search Result 109, Processing Time 0.033 seconds

THE EFFECT OF AUTOCLAVE STERILIZATION AND REUSE OF $SMARTPEG^{TM}$ ON THE IMPLANT STABILITY QUOTIENT (ISQ) MEASUREMENT ($Smartpeg^{TM}$의 고압멸균소독 및 재사용이 임플랜트 안정성 지수(ISQ) 측정에 미치는 영향)

  • Kang, In-Ho;Kim, Myung-Joo;Lim, Young-Jun;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.644-652
    • /
    • 2007
  • Statement of problem: Resonance frequency analysis is evaluated as the non-invasive and objective method for the evaluation of implant stability and has been increasingly used. It is necessary to evaluate the factors affect the ISQ measurement stability. Purpose: This study was performed to evaluate the effect of the autoclave sterilization and reuse of $Smartpeg^{TM}$ on ISQ measurement. Material and methods: $SmartPeg^{TM}$ (Integration Diagnostics Ltd., $G\ddot{o}teborg$, Sweden) of autoclave group (A) was autoclave sterilized 9 times and $Smartpeg^{TM}$ of reuse group (R) was reused 9 times. Ten $SmartPeg^{TM}s$ were allocated to each group and after each autoclave sterilization and reuse, implant stability quotient (ISQ) values were measured 3 times from the two directions a and b at a right angle. $Osstell^{TM}$ mentor (Integration Diagnostics Ltd. $G\ddot{o}teborg$, Sweden) was used and type 1 (article no. 100353) $Smartpeg^{TM}$ was selected according to $Smartpeg^{TM}$ reference list. Osstem Implant US II future (Osstem Co., Seoul, Korea) in $4.0mm{\times}11.5mm$ was embedded in the self-curing acrylic resin ($Orthojet^{(R)}$, Lang Dental, U.S.A.). Data was statistically analyzed by one-way ANOVA $({\alpha}=.05)$ and scheffe test was done where a significant difference exist. Correlation test was also done between ISQ value and the number of autoclave sterilization or reuse. Results: 1. In autoclave group, the means and sd. of ISQ value before autoclave sterilization were $84.97{\pm}0.41,\;84.93{\pm}0.74$ at direction a and b. There was significant differences between autoclave groups at direction a and b (P=.000). 2. In reuse group, the means and sd. of ISQ value before reuse were $85.40{\pm}0.62,\;85.50{\pm}0.57$ at direction a and b. There was no significant difference between reuse groups at direction a and b (P>.05). 3. There was a weak positive correlation between the number of reuse and ISQ value at direction a and b (${\gamma}=.207$ and .246, P<.01). Conclusion: Within the limitations of this study, the following conclusions were drawn. Till ninth reuse of $Smartpeg^{TM}$, the ISQ measurement stability did not be affected. After twice autoclave sterilization of $Smartpeg^{TM}$ the ISQ measurement stability was affected.

Fit analysis of CAD-CAM custom abutment using micro-CT (Micro-CT를 이용한 맞춤형 CAD-CAM 지대주의 적합성 분석)

  • Min, Gwang-Seok;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.370-378
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate screw joint stability and sagittal fit between internal connection implant fixtures of two different manufacturers and customized abutments. Materials and methods: Internal connection implant systems from two different manufacturers (Biomet 3i system, Astra Tech system) were selected for this study (n=24 for each implant system, total n=48). For 3i implant system, half of the implants were connected with Ti ready-made abutments and the other half implants were connected with Ti CAD-CAM custom ones of domestic-make (Myplant, Raphabio Co., Seoul, Korea) and were classified into Group 1 and Group 2 respectively. Astra implants were divided into Group 3 and Group 4 in the same way. Micro-CT sagittal imaging was performed for fit analysis of interfaces and preloading reverse torque values (RTV) were measured. Results: In the contact length of fixture-abutment interface, there were no significant differences not only between Group 1 and Group 2 but also between Group 3 and Group 4 (Mann-Whitney test, P>.05). However, Group 2 and Group 4 showed higher contact length significantly than Group 1 and Group 3 in abutment-screw interface as well as fixture-screw one (Mann-Whitney test, P<.05). In addition, RTV was lower in CAD-CAM custom abutments compared to ready-made ones (Student t-test, P<.05). Conclusion: It is considered that domestically manufactured CAD-CAM custom abutments have similar fit at the fixture abutment interface and it could be used clinically. However, RTV of CAD-CAM custom abutments should be improved for the increase of clinical application.

A COMPARATIVE ANALYSIS WITH RESONANCE FREQUENCY ACCORDING TO VARIOUS SIMULATED BONE DEFECTS (다양한 가상 골 결함에 따른 공진 주파수의 비교 분석)

  • Kim Sang-Mi;Park Chan-Jin;Yi Yang-Jin;Chang Beom-Seok;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.487-497
    • /
    • 2005
  • Purpose: Resonance frequency analysis (RFA) , a non-invasive technique for the clinical measurement of implant stability, was investigated. Peri-implant bony defect may contribute to implant failure. This in vitro study evaluated the resonance frequencies according to various bony defects and determined whether the directional bone defect can affect the value of frequency analysis. Material and Method: Fifteen 3.75 mm in diameter and 10 mm in length, machined self-tapping implant future were used. Twelve types of bone defects that have different horizontal and vertical dimensions were simulated. Embedded implants were attached to the dental surveyor. Then, the transducer was connected with the implant fixture and the ISQ value was measured at four different directions. Two-way analysis of variance and post hoc $Sch\`{e}ffe'$ test were performed at the 95% significance level. Results: The control group showed the highest ISQ value and 5 thread-$360^{\circ}$ group had the lowest one. As the vertical exposure of implants in each angle was increased, the ISQ value was decreased. Although the horizontal exposure in each thread was increased, the ISQ value was not significantly decreased. Conclusion : Although the simulated defect type was different from each other, the ISQ value was similar among groups.

Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants

  • Choi, Hae Won;Park, Young Seok;Chung, Shin Hye;Jung, Min Ho;Moon, Won;Rhee, Sang Hoon
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.229-237
    • /
    • 2017
  • Objective: The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Methods: Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $40^{\circ}$. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. Results: There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was $56.88{\pm}6.72%$. Conclusions: Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

Design and Evaluation of Osseointegration Analysis System for Dental Implant (치과 임플란트용 골융합 측정기의 설계 및 평가)

  • Lee, Joo-Hee;Kim, Chang-Il;Paik, Jong-Hoo;Cho, Jeong-Ho;Chun, Myoung-Pyo;Jeong, Young-Hun;Lee, Young-Jin;Lee, Jeong-Bae;Lee, Seung-Dae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • The osseointegration of dental implant is influenced by many factors such as surface geometry, loading and the amount of bone. Thus, stability of the dental implant should be checked periodically. In order to test the stability of dental implant by using resonance frequency analysis, we designed a structure of transducers and fabricated a piezoelectric devices. Using finite element analysis, the thickness and length of piezoelectric device and transducers were tailorized and the optimized frequency of 10 kHz was obtained. The resonance frequency from simulation analysis and evaluation was estimated to be similar as 10 kHz. The osseointegration was further enhanced with increasing frequency from the evaluation result of the finite element analysis.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

A Prospective Clinical Trial on the Mg Oxidized Clinical Implants (마그네슘 양극산화 임플란트의 성공률에 관한 전향적 임상연구)

  • Im, So-Min;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Um, Heung-Sik;Lee, Jae-Kwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.25-39
    • /
    • 2011
  • In animal studies, Magnesium (Mg) - incorporated oxidized implants showed significant enhancement of the bone response. This prospective clinical trial was performed to investigate the success rate, implant stability and marginal bone loss of Mg oxidized clinical implant. The experimental protocol was approved by Institutional Review Board of the Gangneung-Wonju National University Dental Hospital. Fifty healthy patients had partial edentulism were included in this study. Mg oxidized clinical implants (Implant M, Shinhung, Korea) were installed and restored with conventional protocol. The patients were recalled at 1, 3, 6 months after functional loading. Implant stability quotient (ISQ) was measured and periapical radiographic images were obtained. Amount of marginal bone loss was calculated with calibrated images from periapical radiographs. Repeated measured analysis of variance and post hoc Tukey test were used to compare the mean ISQ and bone level. A total of 101 implants were analyzed. The mean ISQ values increased continuously with time lapse from 68.4 at fixture installation to 71.5 at 6 months after loading. Implant stability was correlated with gender, fixture diameter, bone quality and implant sites. The mean marginal bone loss during 6 months after loading was 0.26 mm. There was no failed implant and six-month success rate was 100%. Within the limitations of this study, the six-month success rate of Mg oxidized implant was satisfactory. The implant stability and marginal bone level were excellent. However, further longer clinical studies will be needed to confirm the success of Mg oxidized clinical implant.

Factors Associated with the Stability of Two-part Mini-implants for Intermaxillary Fixation

  • Kim, Seong-Hun;Seo, Woon-Kyung;Lee, Won;Kim, In-Soo;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • Two component orthodontic C-implants have been introduced as intermaxillary fixation (IMF) screws in cases of periodontal problems with bone loss, severely damaged teeth, or short roots. This retrospective research sought to investigate the complications and risk factors associated with the failure of two-part C-implants for IMF cases and to show the possible indications compared to one-component mini-implants. The study sample consisted of 46 randomly selected patients who had a total of 203 implants. Pearson chi-square tests of independence were used to test for associations among categorical variables. At least 19 of the total 203 implants failed (9.3%). There was no significant difference in implant failure due to gender, oral hygiene, and placement, although a significant difference due to soft tissue characteristics and root contact was observed. The two-component design of the mini-implant is reliable for difficult IMF cases. Note, however, that the factors influencing implant failure were found to be age, root damage, and condition of soft tissues.

  • PDF

Influence of the Dental Implant Abutment Screw Coating Materials on Joint Stability (임플란트 지대주나사 코팅이 결합안정성에 미치는 영향)

  • Lim, Hyun-Pil;Park, Young-Sun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Yoon, Suk-ja
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.157-169
    • /
    • 2009
  • The aim of this study was to evaluate effect of implant abutment screw coating treatment on joint stability, investigating mechanical properties of these. For this study used $ExFeel^{(R)}$ external hexed implant system and $15mm{\times}1mm$ discs. Experimental group was $1{\mu}m$ TiN, TiCN, TiC coated abutment screws and discs. To know mechanical property, i evaluated adhesion strength, surface hardness, using disc, corrosion test using screw. The results were as follows : rotation angle of coated screws increased than that of non-coated screw because of lower friction coefficient, especially TiC coated screw group had the largest value, but removal torque decreased in all coated screws (p<0.05). Torque loss before and after fatigue test was the smallest in TiC-coated screws, and the largest in non-coated screws (p<0.05), and there was no statistically significant difference between dry condition and wet condition of screws because of higher surface hardness and lower friction coefficient. From the above results, TiN, TiCN, TiC coating group had high abrasion resistance, especially TiC coated group which had low torque-consuming, high rotation angle as low friction coefficient will be considered to influence on implant abutment screw joint stability positively.

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.