• Title/Summary/Keyword: Implant Design

Search Result 475, Processing Time 0.025 seconds

Design of electromagnetic type transducer to drive round window with high efficiency (고효율 전자기형 정원창 구동 트랜스듀서의 설계)

  • Lee, Jang-Woo;Kim, Dong-Wook;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • Implantable middle ear hearing devices(IMEHDs) have being actively studied to overcome the problems of conventional hearing aids. Vibration transducer, an output devices of IMEHDs, is attached on the ossicular chain and transmits mechanical vibration to cochlea. This approach allows us to hear more clear sound because mechanical vibration is effective to transfer high frequency acoustics, but occurs some problems such as fatigue accumulation to ossicular chian and reduction of vibration displacement caused by mass loading effect. Recently, many studies for the round window stimulation are announced, because it does not cause such problems. It have been studied by older transducers designed for attaching on ossicular chain. In this paper, we proposed a new electromagnetic transducer which consists of two magnets, three coils and a vibration membrane. The magnet assembly, magnet coupled in opposite direction, were placed in the center of three coils, and the optimum length of each coil generating maximum vibrational force was calculated by finite element analysis(FEA). The transducer was implemented as the calculated length of each coil, and measured vibration displacement. From the results, it is verified the vibration displacement can be improved by optimizing the length of coils.

Microtensile bond strength of CAD/CAM-fabricated polymer-ceramics to different adhesive resin cements

  • Sadighpour, Leyla;Geramipanah, Farideh;Ghasri, Zahra;Neshatian, Mehrnoosh
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.40.1-40.10
    • /
    • 2018
  • Objectives: This study evaluated the microtensile bond strength (${\mu}TBS$) of polymer-ceramic and indirect composite resin with 3 classes of resin cements. Materials and Methods: Two computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated polymer-ceramics (Enamic [ENA; Vita] and Lava Ultimate [LAV; 3M ESPE]) and a laboratory indirect composite resin (Gradia [GRA; GC Corp.]) were equally divided into 6 groups (n = 18) with 3 classes of resin cements: Variolink N (VAR; Vivadent), RelyX U200 (RXU; 3M ESPE), and Panavia F2 (PAN; Kuraray). The ${\mu}TBS$ values were compared between groups by 2-way analysis of variance and the post hoc Tamhane test (${\alpha}=0.05$). Results: Restorative materials and resin cements significantly influenced ${\mu}TBS$ (p < 0.05). In the GRA group, the highest ${\mu}TBS$ was found with RXU ($27.40{\pm}5.39N$) and the lowest with VAR ($13.54{\pm}6.04N$) (p < 0.05). Similar trends were observed in the ENA group. In the LAV group, the highest ${\mu}TBS$ was observed with VAR ($27.45{\pm}5.84N$) and the lowest with PAN ($10.67{\pm}4.37N$) (p < 0.05). PAN had comparable results to those of ENA and GRA, whereas the ${\mu}TBS$ values were significantly lower with LAV (p = 0.001). The highest bond strength of RXU was found with GRA ($27.40{\pm}5.39N$, p = 0.001). PAN showed the lowest ${\mu}TBS$ with LAV ($10.67{\pm}4.37N$; p < 0.001). Conclusions: When applied according to the manufacturers' recommendations, the ${\mu}TBS$ of polymer-ceramic CAD/CAM materials and indirect composites is influenced by the luting cements.

Comparative clinical study of the marginal discrepancy of fixed dental prosthesis fabricated by the milling-sintering method using a presintered alloy

  • Kim, Mijoo;Kim, Jaewon;Mai, Hang-Nga;Kwon, Tae-Yub;Choi, Yong-Do;Lee, Cheong-Hee;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.280-285
    • /
    • 2019
  • PURPOSE. The present study was designed to examine the clinical fit of fixed dental prosthesis fabricated by the milling-sintering method using a presintered cobalt-chromium alloy. MATERIALS AND METHODS. Two single metal-ceramic crowns were fabricated via milling-sintering method and casting method in each of the twelve consecutive patients who required an implant-supported fixed prosthesis. In the milling-sintering method, the prosthetic coping was designed in computer software, and the design was converted to a non-precious alloy coping using milling and post-sintering process. In the casting method, the conventional manual fabrication process was applied. The absolute marginal discrepancy of the prostheses was evaluated intraorally using the triple-scan technique. Statistical analysis was conducted using Mann-Whitney U test (${\alpha}=.05$). RESULTS. Eight patients (66.7%) showed a lower marginal discrepancy of the prostheses made using the milling-sintering method than that of the prosthesis made by the casting method. Statistically, the misfit of the prosthesis fabricated using the milling-sintering method was not significantly different from that fabricated using the casting method (P=.782). There was no tendency between the amount of marginal discrepancy and the measurement point. CONCLUSION. The overall marginal fit of prosthesis fabricated by milling-sintering using a presintered alloy was comparable to that of the prosthesis fabricated by the conventional casting method in clinical use.

Evaluation of the accuracy of dental casts manufactured with 3D printing technique in the All-on-4 treatment concept

  • Hilin, Tas;Fatih, Demirci;Mesut, Tuzlali;Erkan, Bahce;Guler Yildirim, Avcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.379-387
    • /
    • 2022
  • PURPOSE. The aim of this study is to compare the casts obtained by using conventional techniques and liquid crystal display (LCD) three-dimensional (3D) print techniques in the All-on-4 treatment concept of the edentulous mandibular jaw. MATERIALS AND METHODS. In this study, a completely edentulous mandibular acrylic cast (typodont) with bone-level implants placed with the Allon-4 technique served as a reference cast. In this typodont, impressions were taken with the conventional technique and dental stone casts were obtained. In addition, after scanning the acrylic cast in a dental laboratory scanner and obtaining the Standard Tessellation Language (STL) data, 3D printed casts were manufactured with a 3D printing device based on the design. The stone and 3D printed casts were scanned in the laboratory scanner and STL data were obtained, and then the interimplant distances were measured using Geomagic Control X v2020 (3D Systems, Rock Hill, SC, USA) analysis software (n = 60). The obtained data were statistically evaluated with one-way analysis of variance (ANOVA) and Tukey's pairwise comparison tests. RESULTS. As a result of the one-way ANOVA test, it was determined that the stone casts, 3D printed casts, and reference cast values in all distance intervals conformed to the normal distribution and these values had a significant difference among them in all distance intervals. In Tukey pairwise comparison test, significant differences were found between casts at all distance intervals. In all analyses, the level of significance was determined as .05. CONCLUSION. 3D printed casts obtained with a 3D LCD printing device can be an alternative to stone casts when implants are placed in edentulous jaws. [J Adv Prosthodont 2022;14:379-87]

Treatment efficacy of gingival recession defects associated with non-carious cervical lesions: a systematic review

  • Oliveira, Livia Maria Lopes de;Souza, Camila Agra;Cunha, Sinara;Siqueira, Rafael;Vajgel, Bruna de Carvalho Farias;Cimoes, Renata
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.91-115
    • /
    • 2022
  • Purpose: This systematic review aimed to compare the efficacy, defined in terms of the mean percentage of root coverage (mRC), of surgical treatment approaches combined with adhesive restorations of non-carious cervical lesions (NCCLs) to that of root coverage alone in patients with a single gingival recession (GR) and NCCL. Methods: A literature search was conducted to identify longitudinal studies reporting the mRC following treatment for the correction of GR defects associated with NCCLs using a combination of surgical and restorative techniques in systemically and periodontally healthy patients. Results: The search resulted in the retrieval of 12,409 records. Seven publications met the inclusion criteria for the qualitative synthesis of data. The mRCs ranged from 69% to 97%. In the medium term, the gingival margin position was more stable when a connective tissue graft (CTG) was used, independently of whether restoration of teeth with NCCLs was performed. Conclusions: The strength of the evidence was limited by methodological heterogeneity in terms of study design as well as the unit and period of analysis, which precluded a metaanalysis. Although no definitive conclusion could be drawn due to the lack of sufficient evidence to estimate the effectiveness of the interventions, CTG-based procedures contributed to gingival margin stability regardless of the performance of restoration to treat NCCLs.

A ramus cortical bone harvesting technique without bone marrow invasion

  • Jeong-Kui Ku;Min-Soo Ghim;Jung Ho Park;Dae Ho Leem
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.2
    • /
    • pp.100-104
    • /
    • 2023
  • Autogenous bone grafts from the mandibular ramus are a known source of inadequate bone volume scenarios of the residual alveolar ridge. However, the conventional block-type harvesting technique cannot prevent bone marrow invasion, which can cause postoperative complications such as pain, swelling, and inferior alveolar nerve injury. This study aims to suggest a complication-free harvesting technique and present the results of bone grafting and donor sites. One patient received two dental implants with a complication-free harvesting technique that involves creation of ditching holes with a 1 mm round bur. Sagittal, coronal, and axial osteotomies produced grid-type cortical squares using a micro-saw and a round bur to confirm the cortical thickness. The grid-type cortical bone was harvested from the occlusal aspect, and the harvesting was extended through an additional osteotomy on the exposed and remaining cortical bone to prevent bone marrow invasion. The patient did not suffer postoperative severe pain, swelling, or numbness. After 15 months, the harvested site exhibited new cortical bone lining, and the grafted area had healed to a cortico-cancellous complex with functional loading of the implants. Our technique, grid-type cortical bone harvesting without bone marrow invasion, allowed application of autogenous bone without bone marrow invasion to achieve acceptable bone healing of the dental implants and to regenerate the harvested cortical bone.

Biomechanics of Hip and Hip Replacement Arthroplasty (고관절 및 인공 고관절의 생역학)

  • Lee, Young-Kyun;Choi, Ji Hye;Won, Heejae;Koo, Kyung-Hoi
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.377-383
    • /
    • 2019
  • The biomechanics study of the hip is aims to understand and explore the dynamic principles of weight transfer through the hip joint. This basic science knowledge can be applied in a variety of areas, including degenerative joint diseases and hip replacement arthroplasty. In particular, understanding of the biomechanics of the hip has led to the development of materials, design and fixation of implants, and it can be applied in various areas, such as the selection of surgical methods and the location of the implant. Moreover, it is essential to have good knowledge of the biomechanics of the hip to achieve better clinical results for patients. Therefore, this paper introduces the basic knowledge and biomechanical characteristics of a normal hip and hip replacement arthroplasty, which are needed to approach the biomechanics of the hip.

Clinical Outcomes of Minimally Invasive Surgical Stabilization of Rib Fractures Using Video-Assisted Thoracoscopic Surgery

  • Chae-Min Bae;Shin-Ah Son;Yong Jik Lee;Sang Cjeol Lee
    • Journal of Chest Surgery
    • /
    • v.56 no.2
    • /
    • pp.120-125
    • /
    • 2023
  • Background: Multiple rib fractures are common in blunt chest trauma. Until recently, most surgical rib fixations for multiple rib fractures were performed via open thoracotomy. However, due to the invasive nature of tissue dissection and the resulting large wound, an alternative endoscopic approach has emerged that minimizes the postoperative complications caused by the manipulation of injured tissue and lung during an open thoracotomy. Methods: Our study concentrated on patients with multiple rib fractures who underwent surgical stabilization of rib fractures (SSRF) between June 2018 and May 2020. We found 27 patients who underwent SSRF using video-assisted thoracoscopic surgery. The study design was a retrospective review of the patients' charts and surgical records. Results: No intraoperative events or procedure-related deaths occurred. Implant-related irritation occurred in 4 patients, and 1 death resulted from concomitant trauma. The average hospital stay was 30.2±20.1 days, and ventilators were used for 12 of the 22 patients admitted to the intensive care unit. None of the patients experienced major pulmonary complications such as pneumonia or acute respiratory distress syndrome. Conclusion: Minimally invasive rib stabilization surgery with the assistance of a thoracoscope is expected to become more widely used in patients with multiple rib fractures. This method will also assist patients in a quick recovery.

Dislocation after Revision Total Hip Arthroplasty: A Comparison between Dual Mobility and Conventional Total Hip Arthroplasty

  • Hyun Sik Shin;Dong-Hong, Kim;Hyung Seok Kim;Hyung Seob Ahn;Yeesuk Kim
    • Hip & pelvis
    • /
    • v.35 no.4
    • /
    • pp.233-237
    • /
    • 2023
  • Purpose: The objective of this study was to analyze the results from a cohort of patients who underwent a revision total hip arthroplasty (THA) using a dual mobility cup (DMC) implant. Materials and Methods: A retrospective review of revised THAs was conducted using the database from a single tertiary referral hospital. A total of 91 revision THAs from 91 patients were included in the study. There were 46 male hips and 45 female hips. The mean age was 56.3±14.6 years, and the mean follow-up period was 6.4±5.9 years. In performance of revision THAs, the DMC implants were used in 18 hips (19.8%), and the conventional implants were used in 73 hips (80.2%). Results: During the follow-up period, three dislocations were identified, and the overall dislocation rate was 3.3%. Early dislocation (at one month postoperatively) occurred in one patient, while late dislocation (at a mean of 7.5 years) occurred in two patients. There was no occurrence of dislocation in the DMC group (0%), and three dislocations were detected in the conventional group (4.1%). However, no significant difference in the rate of dislocation was observed between the two groups (P=0.891). Conclusion: Although the rate of dislocation was higher in the conventional group, there were no statistically significant differences between the two groups due to the small number of patients. Nevertheless, we believe that the dual mobility design is advantageous in terms of reducing dislocation rate and can be recommended as an option for a revision THA.

Characteristics of Bio-impedance for Implantable Electrode Design in Human Skin (인간 피부에 삽입형 전극설계를 위한 생체임피던스 특성)

  • Kim, Min Soo;Cho, Young-Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • Electrode contact resistance is a crucial factor in physiological measurements and can be an accuracy limiting factor to perform electrical impedance measurements. The electrical bio-impedance values can be calculated by the conductivity and permittivity of underlying tissue using implant electrode in human skin. In this study we focus on detecting physiological changes in the human skin layers such as the sebum layer, stratum corneum layer, epidermis layer, dermis layer, subcutaneous fat and muscle. The aim of this paper is to obtain optimal design for implantable electrode at subcutaneous fat layer through the simulation by finite element methods(FEM). This is achieved by evaluating FEM simulations geometrically for different electrodes in length(50 mm, 70 mm), in shape(rectangle, round square, sexangle column), in material(gold) and in depth(22.325 mm) based on the information coming from the subcutaneous fat layer. In bio-impedance measurement experiments, according to electrode shapes and applied voltage, we have ascertained that there was the highest difference of bio-impedance in subcutaneous fat layer. The methodology of simulation can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation.