• Title/Summary/Keyword: Implant Design

Search Result 475, Processing Time 0.075 seconds

A THREE DIMEMSIONAL PHOTOELASTIC STRESS ANALYSIS OF IMPLANT SUPPORTING BONE TISSUE ACCORDING TO DESIGN OF ATTACHMENTS USED FOR MANDIBULAR OVERDENTURE USING TWO OSSEOINTEGRATED IMPLANSTS (두개의 골유착성 임프란트를 이용한 하악 OVERDENTURE에서 ATTACHMENT 설계에 따른 임프란트 지지조직의 삼차원적 광탄성 응력분석)

  • Shin, Kyoo-Hag;Jeong, Chang-Mo;Jeon, Young-Chan;Hwang, Hie-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.31-69
    • /
    • 1996
  • The purpose of this investigation was to analyze stress distribution in implant supporting tissue according to different types of attachments such as combination bar attachment, Hader bar attachment, O-Ring attachment and Dal-Ro attachment that are used in mandibular overdenture by using two osseointegrated implants, to study the influence that POM IMC used in bar type attachment has in implant supporting tissue and compare the preceding analyses to find out an effective stress distribution method. Three dimensional photoelastic method was used to obtain the following results. (A) Analysis of stress distribution according to attachment type 1. Under vertical load condition, compressive stress was seen at implant supporting area of working side on all the photoelastic models but in Hader bar attachment tensional stress was seen at distal upper area of implant supporting area. Relatively Hader bar and O-Ring attachment showed even stress distribution pattern. 2. Under vertical load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models. 3. Under $25^{\circ}$ lateral load condition, general compressive stress was seen at working side implant supporting area in most of the models, especially at distal upper supporting area higher compressive stress concentration was seen in combination bar attachment and tensional stress concentration, in Hader bar attachment. 4. Under $25^{\circ}$ lateral load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models, except O-Ring model which showed compressive stress only. (B) Influence of POM IMC to stress distribution in bar type attachment 5. Under vertical load condition, better stress distribution pattern was seen at working side of combination bar and Hader bar attachment model using POM IMC. 6. Under vertical load condition, stress value was increased at nonworking side of combination bar attachment model using POM IMC and tendency of increasing compression was seen at nonworking side of Hader bar attachment model using POM IMC. 7. Under $25^{\circ}$ lateral load condition, better stress distribution pattern was seen at working side of combination bar attachment model using POM IMC but tendency of increasing stress was seen on working side of Hader bar attachment model using POM IMC. 8. Under $25^{\circ}$ lateral load condition, stress reduction was seen at nonworking side of combination bar attachment model using POM IMC but tendency of increasing stress was seen at nonworking side of Hader bar attachment model using POM IMC.

  • PDF

A Biomechanical Analysis or the Stress Distribution of Dental Implant and Alveolar Bone Utilizing Finite Element Method (유한요소법을 이용한 치과용 고정체와 치조골에서의 응력분포에 대한 생체 역학적 분석)

  • Jung, J.K.;Shin, J.W.;Lee, S.J.;Kim, Y.K.;Kim, J.S.;Park, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.511-514
    • /
    • 1997
  • The objective of this study is to propose a finite element based design of the dental implant replacing unction and shape of natural teeth. For this, geometric actors were varied to investigate stress distribution of the alveolar bone around dental implant. In this study, the results were obtained based on the theory of linear elastic, with geometrically axisymmetric assumption. Geometric actors determining implant shape are ranged as 0.2mm-0.6mm, 0.04mm-0.1mm, 0.46mm-0.84mm or height of thread, radius of curvature of thread, and pitch, respectively. The stresses in the alveolar bone caused by biting force playa major role in determining implant stability. Especially, the stress concentration in the cortical bone causes bone resorption and finally makes the implant unstable. Therefore, the stress distributions were investigated on the side of the alveolar bone focusing on the area of cortical bone. The maximum von Mises stress was found to increase up to 6% as the height of thread increases, while its value was to decrease to 19% when the radius of curvature increase within the assigned ranges. For the variation of pitch, the larger size of pitch results in greater maximum von Mises stress when the length of the implant under consideration is fixed. The existence of the neck below the shoulder did not affect the stress distribution in the region of alveolar bone. However, the stresses on the side of the implant near the neck were found to be different by 20% approximately. Therefore, the neck can provide the stability of the implant against continuing biting movement. As a conclusion, the finite element based study shows a potential in designing the dental implant systematically.

  • PDF

Conversion of implant overdenture to an implant assisted removable partial denture in maxilla: case report (상악 임플란트 피개의치에서 임플란트 보조 국소의치로의 전환: 증례보고)

  • Seong-Soo Cho;Min-Gyu Song;Yoon-Hyuk Huh;Chan-Jin Park;Lee-Ra Cho;Kyung-Ho Ko
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.1
    • /
    • pp.54-63
    • /
    • 2024
  • The long-term use of an implant overdenture shows problems, such as wear of attachment, concentrated occlusal forces on the anterior teeth, fracture of artificial teeth and rotation of denture. By transitioning to an Implant-assisted removable partial denture (IARPD) using additional implant placement, the problems can be solved. In this case report, a transition was made from implant overdenture to IARPD utilizing surveyed crowns to distribute occlusal forces concentrated on anterior teeth and to prevent denture rotation in a skeletal Class III patient. Design of definitive prosthesis with appropriate function and aesthetics was determined through several stages of provisional restorations. In this case, appropriate posterior occlusion and maintenance of peri-implant bone level of definitive prosthesis were observed.

A Simple Surgical Guide for Horizontal Bone Graft: A Technical Note

  • Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.90-92
    • /
    • 2016
  • Horizontal bone defect in the anterior maxilla makes it difficult to place dental implant. The golden standard for bone augmentation is autogenous block bone graft. Tight contact with recipient site and rigid fixation are two key factors for successful block bone graft. Ramal bone graft has been the most reliable methods for dental implant field. However, the curvature of the alveolar ridge is different from ramal bone shape. Intraoperative trimming of ramal bone is cumbersome for surgeon. In this technical note, a simple way to design the ramal bone harvest using bone wax stent is reviewed.

WEAR BEHAVIOR OF ATTACHMENTS FOR IMPLANT RETAINED OVERDENTURE ACCORDING TO MATERIAL IN VITRO

  • Lee Seok-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2003
  • Statement of problem. The proper materials of attachments for implant retained overdenture are unknown, such as the correlation between retention and abrasion, as well as the types of materials that are suitable for patrix and for matrix individually. Purpose of this study. The aim of this study was to select a proper clinical attachment system for a successful treatment as well as patient satisfaction. Methods. Retention and abrasion of 14 commercial attachments were measured during 15,000 removes. Results. A retentive part (matrix) which requires elasticity has to be made of gold while the patrix part which does not require elasticity has to be made of titanium. This gold matrix / titanium patrix combination showed the most retentive force and the least retention loss.

PHOTOELASTIC STRESS ANALYSIS OF LOAD TRANSFER TO SATELLITE ABUTMENT AS AN IMMEDIATE ABUTMENT (인공치아의 즉시부하를 위해 새로이 개발된 인공치아 지대주(Satellite Abutment)의 광탄성 응력 분석)

  • Park, Sang-Kyu;Lee, Baek-Soo;Engelke, W;Kim, Boo-Dong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.472-479
    • /
    • 2002
  • Since $Br^{\circ}anemark$ introduced the osseointegrated implants, they have been granted for useful methods for the restoration of oral function. The original $Br^{\circ}anemark$ protocol recommended long stress-free healing periods to achieve the osseointegration of dental implants. However, many clinical and experimental studies have shown that the osseointegration is no wonder in almost cases and that early and immediate loading may lead to predictable osseointegration. So we are willing to introduce the Satellite Abutment newly invented for immediate loading. We think that it will make the occlusal forces dispersed to surrounding bone and that we can restore the oral function immediately after implant installation not disturbing osseointegration. In case of using Satellite abutment, stress concentrated to bone contact area of implant was distributed not only fixation plate and screws but also superior, middle portion of implant and cortical layer of jaw bone. It was clearly decreased on the bone contact surfaces around dental implants. 1. Stress was decreased more than 76.5% when satellite straight abutment was used. 2. Stress was decreased more than 50% when satellite angled abutment was used. 3. The stress around dental implant was well distributed along the cortical bone surface and the fixation plate and screw. This study concludes that satellite abutment can be used as all immediate loading implant prothesis because it was possible to distribute periimplant occlusal stress through implant contact bone surface and cortical layer of jaw bone.

The Healing of Exposed Implant Surfaces in A Maxillary Sinus Cavity (상악동 내 노출된 임플란트의 치유양상)

  • Lee, Seoung-Ho;Choi, Byung-Ho;Zhu, Shi-Jiang;Jung, Jae-Hyung;You, Tae-Min;Lee, Hyeon-Jung;Li, Jingxu;Huh, Jin-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.1073-1079
    • /
    • 2005
  • 1. Objective. The aim of this study was to investigate whether dental implant exposure to the maxillary sinus cavity increases the risk of maxillary sinus complications. 2. Study design. An implant was placed bilaterally in the maxillary sinus of eight adult female mongrel dogs in a way that it penetrated the bone and mucous membrane of the maxillary sinus floor to the extent of 2 mm, 4 mm, or 8 mm. The implants were left in place for six months. 3. Results. Radiographic and histologic examinations did not show any signs of pathologic findings in the maxillary sinus of the eight dogs. 4. Conclusion. This study indicates that implant protrusion into the maxillary sinus cavity is not related to the development of sinus complications.

Influence of implant mucosal thickness on early bone loss: a systematic review with meta-analysis

  • Di Gianfilippo, Riccardo;Valente, Nicola Alberto;Toti, Paolo;Wang, Hom-Lay;Barone, Antonio
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.4
    • /
    • pp.209-225
    • /
    • 2020
  • Purpose: Marginal bone loss (MBL) is an important clinical issue in implant therapy. One feature that has been cited as a contributing factor to this bone loss is peri-implant mucosal thickness. Therefore, in this report, we conducted a systematic review of the literature comparing bone remodeling around implants placed in areas with thick (≥2-mm) vs. thin (<2-mm) mucosa. Methods: A PICO question was defined. Manual and electronic searches were performed of the MEDLINE/PubMed and Cochrane Oral Health Group databases. The inclusion criteria were prospective studies that documented soft tissue thickness with direct intraoperative measurements and that included at least 1 year of follow-up. When possible, a meta-analysis was performed for both the overall and subgroup analyses. Results: Thirteen papers fulfilled the inclusion criteria. A meta-analysis of 7 randomized clinical trials was conducted. Significantly less bone loss was found around implants with thick mucosa than around those with thin mucosa (difference, -0.53 mm; P<0.0001). Subgroups were analyzed regarding the apico-coronal positioning, the use of platform-matched vs. platform-switched (PS) connections, and the use of cement-retained vs. screw-retained prostheses. In these analyses, thick mucosa was found to be associated with significantly less MBL than thin mucosa (P<0.0001). Among non-matching (PS) connections and screw-retained prostheses, bone levels were not affected by mucosal thickness. Conclusions: Soft tissue thickness was found to be correlated with MBL except in cases of PS connections used on implants with thin tissues and screw-retained prostheses. Mucosal thickness did not affect implant survival or the occurrence of biological or aesthetic complications.

Long-term cumulative survival and mechanical complications of single-tooth Ankylos Implants: focus on the abutment neck fractures

  • Shim, Hye Won;Yang, Byoung-Eun
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.423-430
    • /
    • 2015
  • PURPOSE. To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth $Ankylos^{(R)}$ implants. MATERIALS AND METHODS. This was a retrospective clinical study that analyzed 450 single $Ankylos^{(R)}$ implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. RESULTS. The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). CONCLUSION. The $Ankylos^{(R)}$ implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.