• Title/Summary/Keyword: Impinging Type

Search Result 82, Processing Time 0.019 seconds

Mass Distribution and Spray Characteristics to Liquid-Gas Line Selection of Unlike Triplet Impinging Injector (비동질 3중 충돌형 인젝터의 기체-액체 라인 선택에 따른 분무특성)

  • Lee, I.C.;Lee, C.J.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 2006
  • Impinging angle, impinging distance, length eve. diameter and injection pressure of a triplet injector were tested to evaluate the spray characteristics injected by liquid/gas combinations. Two different kinds of unlike triplet sprays were produced by changing the gas and liquid feed lines. One was the G-L-G(Gas-Liquid-Gas) type, and the other was L-G-L(Liquid-Gas-Liquid) type. Spray angles were wider with the G-L-G type than with L-G-L type. Mass distributions in spray were obtained with a, mechanical patternator. Mass distributions were not circular but elliptical distributions. When the range of mechanical patternator to injector decreased, mass distributions were more concentrated in the center region.

  • PDF

Atomization Characteristics of a Double Impinging F-0-0-F Type Injector with Four Streams for Liquid Rockets

  • Kang, Shin-Jae;Rho, Byung-Joon;Oh, Je-Ha;Kwon, Ki-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.466-476
    • /
    • 2000
  • This paper presents atomization characteristics of a double impinging F -0-0- F type injector with four streams. A phase Doppler particle analyzer was employed to measure the droplet-size and water was used as the inert simulant liquid instead of reactive propellant liquids. The droplet mean diameter (SMD) and size distribution were measured to investigate the effects of the momentum ratio and pressure drop variations. This experimental results can be used during the preliminary design stage of a impinging stream type injector for liquid rockets.

  • PDF

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

A Study on the Heat Transfer Characteristics According to the Impinging Distance of Stagnation Point in Syngas Impinging Jet Flames (합성가스 충돌제트화염에서 충돌거리에 따른 정체점에서의 열전달 특성 연구)

  • Sim, Keunseon;Kim, Dongchan;Choi, Jongmin;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.225-226
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of syngas/air mixture impinging jet flame with 10% hydrogen content. Effects of impinging distance, Reynolds number as major parameters on surface temperature of stagnation point were examined experimentally by the data acquisitions from k-type thermocouple. There were 2 times of maximum peak point of stagnation point with respect to the impinging distance for the investigation. As reynolds number increases, the nusselt number and convective heat transfer coefficient increased accordingly.

  • PDF

Au Experimental Study on the Aerodynamic Noise by a Circular Jet Impinging on a Plate (평판에 충돌하는 원형분류의 공력소음에 관한 실험적 연구)

  • 이동훈;권영필;한희갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.71-79
    • /
    • 1997
  • The objective of this study is to investigate experimentally the effect of surface conditions of the plate on the impinging jet noise. The experimental results about the spectrum, the sound pressure level and the directivity are pressented and discussed in relation with the surface conditions. Regardless of the surface conditions, the pure tones of high level are generated at the same frequency band and the overall sound power level of impinging jets is much higher than that of the free jet. However, the velocity dependence of the sound pressure level and the directivity are different between smooth surfaces and rough surfaces. The dependence of sound pressure level on the jet velocity shows that the smooth surface generates quadrupole-type sound like free jets. However, the perforated or the rough surface radiates sound power exactly proportional to the sixth power of the jet velocity, indicating that the source is fixed dipole type. The directivities of 1/3 octave band sound pressure level for both the free and impinging jet show the peak directivity at 115$^\circ$ upstream, probably due to the refraction associated with velocity gradient.

  • PDF

Gasoline Spray Characteristics Impinging onto the Wall Surface in Suction Air Flow

  • Kim, Woo-Tae;Kang, Shin-Jae;Park, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1376-1385
    • /
    • 2000
  • This study investigates spray characteristics before and after wall impingingment of gasoline spray in suction air flow. For this study, a rectangular model intake port was made of acrylic glass, and suction air was generated by using the forced air blower contrariwise. The injector for this study was a pintle-type port gasoline injector in which an air-assist adaptor is installed to supply assisted air. A PDPA system was employed to simultaneously measure the size and velocity of droplets near the wall. Measured droplets are divided into "pre-impinging droplets"with positive normal velocity and "post-impinging droplets"were negative normal velocity for the suction flow. The velocities, size distributions and Sauter mean diameter(SMD) of pre-and post-impinging droplets for varions injection angles and air-assists are comparatively analyzed.

  • PDF

Reactive Flow Fields Analysis of End-Bunting Combustor with Different Impinging Type Injectors (End-Burning 연소기의 충돌형 산화제 주입기 형상 변화에 따른 연소유동장 해석)

  • Min, Moon-Ki;Kim, Soo-Jong;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.51-59
    • /
    • 2007
  • The end-burning combustion field using impinging oxidizer injectors are analyzed with tangential type injectors in order to examine their mixing and combustion characteristics. The impinging type showed further improved mixing effect as well as the combustion efficiency compared to the previously studied tangential injector. A novel injector capable of delivering impinging and swirl effect is introduced in this study where it demonstrated that the grain coning effect can be avoided. It was found that the combined impinging and swirling flow would promote the radial mixing rate increasing the residence time and the turbulent intensity. However, the use of the step combustor which may augment the turbulent intensity did not show any notable difference compared to the basic combustor.

An Experimental Study on Turbulent Characteristics of an Impinging Split-Triplet Injector

  • Kang, Shin-Jae;Ryu, Ki-Wahn;Kwon, Ki-Chul;Song, Bhum-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2001
  • This paper presents turbulent characteristics of an impinging F-O-O-F type injector in which fuel ad oxidizer impinge on each other to atomize under the different momentum ratio. Water was used as an inert simulant liquid instead of fuel and oxidizer. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The gradient of the spray half-width(b$_2$) along the long-axis direction declined throughout the entire spray flow field with increasing the momentum ratio from 1.19 to 6.48. However, the gradient of the half-width(b$_1$) along the short-axis direction decreased with increasing the momentum ratio. The turbulence intensity and turbulent kinetic energy were converged into the center of the center of the initial region with increasing the momentum ratio. As the momentum ratio increased from MR=1.19 to MR=6.48, the turbulent shear stress decreased. The results of this study can be used for the design of an impinging type injector for liquid rackets.

  • PDF

A Study about Flow Characteristics of Impinging Jet for Thermal Control (I) (전열제어를 위한 충돌제트의 유동특성에 관한 연구(I))

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1330-1335
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozz1e inlet velocity An circular sharp edged nozzle type($45^{\circ}$ ) was used to achieve uniform mean velocity at the nozz1e inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers (Re=1500, 3000, 4500, 6000 and 7500)

  • PDF