• Title/Summary/Keyword: Impinging Spray Characteristics

Search Result 95, Processing Time 0.027 seconds

Gasoline Spray Characteristics Impinging onto the Wall Surface in Suction Air Flow

  • Kim, Woo-Tae;Kang, Shin-Jae;Park, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1376-1385
    • /
    • 2000
  • This study investigates spray characteristics before and after wall impingingment of gasoline spray in suction air flow. For this study, a rectangular model intake port was made of acrylic glass, and suction air was generated by using the forced air blower contrariwise. The injector for this study was a pintle-type port gasoline injector in which an air-assist adaptor is installed to supply assisted air. A PDPA system was employed to simultaneously measure the size and velocity of droplets near the wall. Measured droplets are divided into "pre-impinging droplets"with positive normal velocity and "post-impinging droplets"were negative normal velocity for the suction flow. The velocities, size distributions and Sauter mean diameter(SMD) of pre-and post-impinging droplets for varions injection angles and air-assists are comparatively analyzed.

  • PDF

Characteristics of the Gasoline Spray near Impinging Wall in Suction Flow (흡입유동 중 충돌벽면 근처에서 가솔린 분무특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1285-1293
    • /
    • 2000
  • In port fuel injection system of SI engines, injected fuel is impinged onto the surface of intake valves and port-wall, and then formed the wall flow under the cold start operation. Wall flows entrained into the cylinder result in the unsteady and nonuniform mixture formation. Therefore, the spray impingement to the wall is considered as having negative influences such as lowering combustion efficiency and causing unburned hydrocarbon emissions. This study investigates the spray characteristics of the wall impinging air-assist spray in suction air flow. A PDPA was used to analyze the flow characteristics under the different conditions such as impingement angle and supplied air. Experimental data concerning the impinging sprays has been obtained in the vicinity of the wall. Measured droplets divided into the pre-impinging droplets which denote as the positive normal velocities and post-impinging droplets that describe as the negative normal velocities for the suction flow. Their velocities, size distributions and SMD are comparatively analyzed before and after the impingement.

A Behavior Study of Diesel Spray on High Temperature (고온 분위기에서 디젤 분무의 거동에 관한 연구)

  • 류호성;송규근;안진근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.454-459
    • /
    • 2000
  • Diesel engine which has high thermal efficiency is one of the major movers. Recently, as people pay attention to the environmental pollution, the emission of Diesel engine becomes an important problem. So it is needed to understand the characteristics of diesel fuel spray injected into a combustion chamber to reduce the emission. The factors which control the diesel fuel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of an ambient pressure and temperature. In this paper, the experiments were conducted in the free spray and the impinging spray with various ambient temperatures(273K, 373K, 573K). And the behaviors of the diesel fuel spray, such as penetration, spray angle and axial distance in the free spray and axial distance and spray thickness in the impinging spray were studied.

  • PDF

Spray characteristics of misaligned impinging injectors

  • Subedi, Bimal;Son, Min;Kim, Woojin;Choi, Jangsu;Koo, Jaye
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1257-1262
    • /
    • 2014
  • The variances of atomization characteristics with the misalignment of injectors defined as the fraction of skewness for various angles of impingement and pressure conditions were studied using the doublet impinging injectors with a like-on-like arrangement. Water was used as simulant and the spray characteristics along with the changes in the skewness were analyzed using the methods of spray image photography. Experiment was carried for the impinging nozzles of orifice diameter of 1.2 mm within Reynolds numbers ranging from $9{\times}10^3-4.5{\times}10^4$ and the fraction of skewness considered for the experiment ranges from 0.0 to 0.9 at ambient temperature condition. Flat sheet with a distinct rim produced perpendicular to the plane of impinging jets goes ondisappear and sheet appears comparatively shorterwith the increase in fraction of skewness resulting the atomization of fluid droplet very close to impingement point with decrease in breakup length and increase in spray angle up to certain extent. The maximum allowable skewness was found as the result. The skewness up to the certain extent can be considered as the parameter to control the atomization characteristics of simulant inside the combustion chamberproviding the high economic performance of fuel and time.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Characteristics of a Diesel Spray Impinging on the Hot Plate (고온벽면에 충돌하는 디젤부문의 특성 연구)

  • 문석범;구자예
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.55-65
    • /
    • 1999
  • An experimenta investigation of unsteady impinging DI diesel spray on the unheated plate and heated plate has been conducted in a pressurized chamber using high speed shadowgraphy. The ambient agas pressure was varied using nitrogen with chamber pressure of 1.1MPa, 2.1MPa and 2.6MPa. As the increase of ambient gas pressure of ambient gas pressure, the height of spray is increased if entrainment and circulation . At higher temperature of impinging plate, the radial penetration of the impinging spary is incresed , but the height of impinging spray is decreased.

  • PDF

Behavior of a Diesel Spray Impinged on a Wall (벽면에 충돌하는 디젤분무의 거동)

  • Cho, I.Y.;Oh, J.H.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • In the case of analyzing the combustion phenomena in a small high speed DI diesel engine, one demands the experimental results of the impinging spray on the wall as a basic characteristics. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air at room temperature was charged. The single spray was impinged on a flat wall. The growth of the spray was photographed with transmitted light or scattered light. The effect of the spray axis angle to the wall on the impinging spray was revealed. Finally, the experimental results was presented, that is, the radius and height of the impinging spray was influenced by above mentioned variable.

  • PDF

Effects of Ethanol Mixing Ratio on Spray Characteristics of Triplet Impinging Injector (에탄올 혼합비에 따른 3중 충돌형 인젝터의 분무특성)

  • Lee, In-Chul;Kim, Jong-Hyun;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Spray characteristics of a unlike triplet injector were investigated experimentally. Spray images and SMD of droplet were measured to evaluate the spray characteristics injected by liquid/gas combinations. G-L-G(Gas-Liquid-Gas), L-G-L(Liquid-Gas-Liquid) type of injector were used by changing the gas and liquid feed lines. The SMD graph shows that the droplet sizes decrease in the out of radial direction at a fixed gas Reynolds number. The SMD value of decreasing tendency shows that the more ethyl alcohol ratio increase, the more SMD value decrease.

  • PDF

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

A Study on Atomization Characteristics of Gasoline Impinging Spray Using Glow plug (글로우플러그를 이용한 충돌분무의 미립화특성에 관한 연구)

  • 문영호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.54-61
    • /
    • 2001
  • It is reported that during the cold starting, especially in gasoline engine, the engine response and the effect of HC emission can be improved by prompting atomization and reducing the quantity of fuel adhered to the range of injector tip, inlet port, and inlet valve. The purposes of this study are to promote atomization of fuel before air-fuel mixture in the inlet port. In order to achieve its goal, the glow plug is to evaluate the feasibility of for the early fuel evaporator and the spray behavior characteristics of gasoline, injected on the surface of glow plug with room temperature(2$0^{\circ}C$) and high temperature(25$0^{\circ}C$) is to examine. Particle motion analysis system(PMAS) was used to measure the SMD and the dropsize distribution of impinging spray and free spray. The results of this experiment, evaporation rate of impinging spray was higher than that of free spray, and the higher evaporation rate win, the smaller peak dropsize was. Especially, during early spray SMD of impinging spray was still smaller than that of fee spray.

  • PDF