• Title/Summary/Keyword: Impinging Plate

Search Result 228, Processing Time 0.023 seconds

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

Comparison of Unconfined and Confined Micro-scale Impinging Jets

  • Choo, Kyo-Sung;Youn, Young-Jik;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2210-2213
    • /
    • 2008
  • In the present study, effects of degree of confinement on heat transfer characteristics of a micro-scale slot jet impinging on a heated flat plate are experimentally investigated. The effects of Reynolds numbers (Re = $1000{\sim}5000$), lateral distances (x/B = $1{\sim}10$), nozzle-to-plate spacings (Z/B = $1{\sim}20$), and degree of confinement ($B_c$/B = 3, 48) on the Nusselt number are considered. The results show that the effects of the degree of confinement on the cooling performance of the micro-scale impinging slot jet are significant at lower nozzle-to-plate spacings and higher Reynolds numbers. In addition, it is shown that the cooling performance of the micro-scale unconfined slot impinging jet is 200% higher than that of the micro-scale confined slot impinging jet.

  • PDF

A Study of the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet onto a Plate (평판 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • Kim, M.S.;Oh, J.H.;Jeong, H.M.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a flat plate was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions. The wavy surface was observed in the case of low viscosity water, but not in the high viscosity aqueous glycerol solutions. The sheet thickness increased as the circumferential angle increased or the distance from the impinging point increased, but the thickness decreased as the circumferential angle increased around the impinging point. As the jet speed increased, the sheet thickness decreased, and the sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed that the measurement results agreed well in the case of low viscosity water or high viscosity liquids around the impinging point. The distribution characteristics of the sheet thickness can provide useful means for prediction of spray characteristics in splash plate injectors.

Characteristics of Supersonic Jet Impingement on a Flat Plate (평판에 충돌하는 초음속 제트에 유동특성)

  • Hong Seung-kyu;Lee Kwang-Seop;Park Seung-O
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance (노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성)

  • Kim S. I.;Park S. O.;Lee K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

Flow Characteristics of Dual Impinging Jets using PIV (PIV를 이용한 이중 충돌제트의 유동 특성)

  • Kim, Dong-Keon;Kwon, Soon-Hong;Chung, Sung-Won;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon;Kwon, Soon-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2011
  • The flow characteristics of unventilated dual impinging jets were experimentally investigated. Two nozzles with an aspect ratio of 20 were separated by 6 nozzle widths. The Reynolds number based on nozzle width and nozzle exit velocity was set to 5,000. A Particle Image Velocimetry (PIV) was used to measure turbulent velocity components. It was found that, when an impingement plate was installed in the converging region, there was a stagnation region in the inner area between nozzles. However, when it was installed in the combined region, both jets were merged and collided into the plate, showing single-jet characteristics. In addition, at a dual impinging jet, as the distance between a nozzle and an impingement plate decreased, the spanwise turbulent intensity at the plate increased.

An Experimental Study on Unsteady Heat Transfer of Spray-Impinging Plate in a Pressurized Chamber (가압 분무실내 스프레이 충돌판에서 나타나는 비정상 열전달 측정에 관한 연구)

  • Cho, Chang-Kwun;Lee, Yeol;Koo, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • An experimental investigation on transient heat transfer phenomena of impinging diesel-spray on a flat plate in a pressurized chamber is carried out. A diesel spray is injected from a single-hole nozzle and impinges to a heated flat plate in the chamber. A fast-response thermocouple installed in the top surface of the plate measures the transient variation of surface temperature of the plate under various conditions of the chamber pressures. Utilizing the semi-infinite model, the temporal variation of the heat flux on the plate is determined. Effects of various parameters, such as vertical distances between the nozzle and the plate, radial distances from the injection-axis, and the chamber pressures, on the heat flux characteristics of impinging diesel-spray are studied.

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

A study on an oblique impinging jet (경사충돌분류에 관한 연구)

  • 조용철;김광용;박상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.716-724
    • /
    • 1990
  • Oblique impinging plane jets were investigated experimentally and numerically at Reynolds number 21000. The inclination angle was varied from 90.deg.(normal to the impinging plate) to 60.deg.. The distance H between the nozzle exit and the stagnation point on the impinging plate was fixed at H/D=8. The working fluid was air. The mean velocity components and turbulent quantities were measured by a hot-wire anemometer. And the static pressure distributions on the impinging plate were measured by a Pitot tube. In numerical computation, the governing partial differential equations of elliptic type were solved with conventional k-.epsilon. turbulence model. The measurements show that, after impingement, the jet half width alone the wall increases in both directions, and that similarity for each turbulent quantity such as Reynolds shear stress or turbulent kinetic energy is revealed in the wall jet region. The computed results show some deviation from experimental data in the impingement region, where streamline curvature is significant. However, the computed results agree qualitatively well with measurements.