• Title/Summary/Keyword: Impinging Noise

Search Result 31, Processing Time 0.01 seconds

Experimental comparison on the noise characteristics of free and impinging jets (자유분류와 충돌분류의 소음특성에 관한 실험적 비교)

  • 이동훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.83-89
    • /
    • 1996
  • The objective of this study is to find experimentally the characteristics of the noise generated by the impinging jet on the normal plate, and also to compare the noise characteristics of the impinging jet with those of the free jet. The experiment is performed for the measurement of the noise specturm, the noise power, and the directivity for the free and impinging jets. From the experiment. it is found that the power of noises generated by the free jet as well as the impinging jet is proportional to the eighth power of the jet velocity through the circular converging nozzle, and that the noise power of the impinging jet is 15dB as high as one of the free jet when the plate distance is about within one to three times the nozzle diameter at the pressure ratio 1.39. The sound pressure level of the impinging jet depends upon the jet pressure and the plate distance. The plate distance with the maximum overall sound pressure level is increased with the jet pressure. The directivities with 1/3 octave band frequency for both the free jet and the impinging jet are greatly influenced by the convection effect.

  • PDF

Study on the Design Concept of Impinging Jet Electronics Cooling by Using Axial Fan (축류 팬을 이용한 충돌제트 전자냉각 설계개념에 대한 연구)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • Flow and noise analyses are conducted for examining a new design concept of impinging jet electronics cooling, and the analysis results are compared with conventional electronics cooling techniques. For the application of impinging jet electronics cooling method, the present study considers the air duct where air is supplied by axial fan and air flow from the duct is impinged vertically onto the electronic component heat source. Applying CFD simulation technique and fan noise model to the present cooling scheme, the cooling performance of the impinging jet as well as the operation condition and the noise characteristics of fan are investigated for various impinging jet nozzle conditions and fan models. Furthermore, the impinging jet electronics cooling analysis results are compared with the conventional parallel-flow cooling scheme to give the design concept and criteria of impinging jet cooling method.

Au Experimental Study on the Aerodynamic Noise by a Circular Jet Impinging on a Plate (평판에 충돌하는 원형분류의 공력소음에 관한 실험적 연구)

  • 이동훈;권영필;한희갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.71-79
    • /
    • 1997
  • The objective of this study is to investigate experimentally the effect of surface conditions of the plate on the impinging jet noise. The experimental results about the spectrum, the sound pressure level and the directivity are pressented and discussed in relation with the surface conditions. Regardless of the surface conditions, the pure tones of high level are generated at the same frequency band and the overall sound power level of impinging jets is much higher than that of the free jet. However, the velocity dependence of the sound pressure level and the directivity are different between smooth surfaces and rough surfaces. The dependence of sound pressure level on the jet velocity shows that the smooth surface generates quadrupole-type sound like free jets. However, the perforated or the rough surface radiates sound power exactly proportional to the sixth power of the jet velocity, indicating that the source is fixed dipole type. The directivities of 1/3 octave band sound pressure level for both the free and impinging jet show the peak directivity at 115$^\circ$ upstream, probably due to the refraction associated with velocity gradient.

  • PDF

Unstable Modes of Impinging Circular Jets (원형 충돌제트의 불안정 모드)

  • 권영필;임정빈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.551-556
    • /
    • 1997
  • Based on the experiment for the frequency characteristics and the feedback theory of the impinging-tones, the unstable characteristics of the symmetric mode is analyzed among the various unstable modes of circular impinging jets. There are two different symmetric modes; one is the low-frequency mode S1 due to the vortex at the outside of the jet and the high-frequency mode S2 due to the inside vortex. Each mode has its own characterictics of convection speed decreasing with frequency.

  • PDF

Characteristics of Plane Impinging Jets(1) - Slit-tone - (평면 충돌제트의 불안정 특성(1) -슬릿음-)

  • 권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2004
  • In this study, slit-tones by plane impinging jet are investigated experimentally over the whole subsonic flow range, especially at low speeds, in order to obtain the instability behaviour of impinging plane jet. Slit-tones are generated at low speeds associated with laminar shear layer instability as well as at high speeds associated with turbulent instability. Most of low-speed slit-tones are induced by symmetric mode instability unless the slit is not so wide, in which case antisymmetric modes are induced like edge-tones. It is found that the frequencies at low speeds ate controled by the unstable condition of the vortex at the nozzle exit and its pairings by which the frequencies are decreased by half. In the case of symmetric modes related with low-speed slit-tones, frequencies lower than those associated with one-step pairings are not found.

Instabilities of High-speed Impinging Circular Jets (고속 원형충돌제트의 불안정 특성)

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.256-262
    • /
    • 1997
  • The characteristics of the unstable impinging circular jet were investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes Si and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed by measuring frequency and phase-distribution around the jet. Radiation characteristics of impinging-tone were studied by measuring axial directivity. It was founded that the radiation patterns of symmetric and helical mode are different and it is toward the plate as the impinging distance increased. By estimating the convection velocity of the unstable jet, it was founded that the convection speed decreases with the frequency and its decreasing pattern varies with unstable modes S1, S2 and H, respectively.

  • PDF

Frequence Characteristics of Impinging Tones by High-Speed Plane Jets and Wedges (고속 평면제트와 쐐기에 의한 충돌 순음의 주파수특성)

  • Kwon, Young-Pil;Jang, Wook;Lee, Geun, Hee;Kim, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1210-1216
    • /
    • 2001
  • The impinging tones by high-speed plane jets are investigated for the characteristics of edgetone generation based on experimental observations. Experiment has been performed for edgetones with a slit nozzle and a wedge system. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously for edgetones and platetones by various nozzles are compared with the present edgetone data for the condition of tone generation, the frequency ranges and the effective source point. It is found that the jet speed has no fundamental influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidencies by normalized parameters based on the slit thickness.

  • PDF

Instability Characteristics of Circular Jets Producing Hole-Tones (Hole-Tone의 발생과 원형제트의 불안정 특성)

  • 임정빈;권영필
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF

Characteristics of Plane Impinging Jets(2)- Cylinder-tone - (평면 충돌제트의 불안정특성(2)-원통음-)

  • Kwon, Young-Pil;Kim, Wook;Lee, Joo-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • The objective of this study is to obtain the instability characteristics of the plane jet impinging on circular cylinder associated with the cylinder-tone. It is found that the characteristics depends upon he ratio of the cylinder diameter to the nozzle width, D/h, and the jet velocity. When the ratio is oderate the cylinder-tone is similar to the edge-tone. With increase of the ratio, its characteristics ecomes similar to that of the plate-tone in which only the high-speed tone associated with turbulent et is generated. When D/h 〈1. the frequency range, especially the lower limit of frequency, is ignificantly influenced by the cylinder diameter. At around D/h = 1/2, while low speed tones are nduced with the antisymmetric mode of instability and affected by the vortex shedding from the ylinder, high-speed tones are generated, at first, with the symmetric mode of instability. and then, ith antisymmetric mode, as the jet velocity increases.