• Title/Summary/Keyword: Impinging Jet Heat Transfer

Search Result 196, Processing Time 0.022 seconds

Heat Transfer Characteristics in Wall Jet Region with Impinging Water Jet (충돌수분류에 의한 벽면분류 영역에서의 전열특성)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 1984
  • The purpose of this investigation is to study heat transfer characteristics in wall jet region on a flat plate caused by upward impinging water jet. In the wall jet region, heat transfer results by impinging water jet are being compared with the ones with supplementary water. As the radius increases, the heat transfer coefficient in the wall jet region consquently decreases, but decreasing nozzle-heat plate distance, the reduction rate increases. The experimental equation is expressed as follows : $$\frac{N_{ur}}{P_r^{0.4}}{\cdot}\overline{\xi}=m(\overline{\eta}{\codt}Re{\delta})^n,\;m=0.034\~0.056,\;n=1.74\~2.007$$ The optimum height of supplementary water is obtained to improve heat transfer effect of wall jet region.

  • PDF

Heat Transfer Characteristics of a Pulsating Impinging Jet (맥동충돌제트의 열전달 특성)

  • Lee, Eun-Hyun;Lee, Dae-Hee;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.903-910
    • /
    • 2002
  • The present study aims to investigate the heat transfer characteristics of a pulsating axisymmetric air jet impinging on a heated wall. An axisymmetric contraction nozzle is used to obtain uniform profiles for the mean velocity and turbulence intensity at the nozzle exit. Measurements of the time averaged temperature on the impingement surface are conducted using a Thermochrornatic Liquid Crystal(TLC) technique for steady and pulsating jets at the jet Reynolds numbers of 20000, 30000 and 40000. Considered are pulsation frequencies of 10 and 20 Hz, corresponding to Strouhal numbers below 0.06 based on nozzle width and jet discharge velocity. In addition, the effect of nozzle-to-plate distances in the range of 2 to 10 on heat transfer characteristics is assessed. The pulsating impinging jet provides more uniform heat transfer coefficient near the impingement region, irrespective of H/D. Based on the measured data, a good correlation as a function of the jet Reynolds and Nusselt numbers is reported. It is also found that an exponent m in the relation of Nu ${\propto}\;Re^m$ depends on both r/D and H/D, by which the impinging jet flows are highly affected.

Study on the Characteristics of Heat Transfer with Array of Multiple Impinging Jet Nozzle (충돌제트 노즐의 다중 배열 형상에 따른 열전달 특성)

  • Kim, D.K.;Son, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2006
  • In this paper, we present the flow and heat transfer characteristics with the array of impinging jet nozzles by using the numerical computation and experiment. Numerical solutions were obtained for dimensionless gap H=6, dimensionless outlet length L=10 and Reynolds number Re=1500 by using the commercial CFD code, CFX-5. Experimental and numerical results were agreed well with each other. It was found that the impinging jet with circular array nozzles generated the uniform heat transfer area and the maximum heat transfer is higher than rectangular array nozzles for certain parameter sets. It is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer.

  • PDF

Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink (경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구)

  • Hong, Ki-Ho;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.

Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet (노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성)

  • Hwang, Sang-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

Study on the Heat Transfer Enhancement with Array of Impinging Jet Nozzles (충돌제트 노즐의 배열방법에 따른 열전달 특성에 관한 연구)

  • Park, Jae-Hyun;Suh, Young-Kweon;Kim, Dong-Kyun;Kim, See-Pum
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1476-1481
    • /
    • 2004
  • In this paper, we present the flow and heat transfer characteristics with the array of impinging jet nozzles by using the numerical computation and experiment. Numerical solutions were obtained for dimensionless gap H=6, dimensionless outlet length L=10 and Reynolds number Re=1500 by using the commercial CFD code, CFX -5. Experimental and numerical results were agreed well with each other. It was found that the impinging jet with circular array nozzles generated the uniform heat transfer area and the maximum heat transfer is higher than rectangular array nozzles for certain parameter sets.

  • PDF

Effect of Turbulence Promoter Width on Heat Transfer Augmentation in Impinging Air Jet System (충돌공기분류계(衝突空氣噴流系)에서 난류촉진체(亂流促進體)의 폭변화(幅變化)가 전열증진(傳熱增進)에 미치는 영향(影響))

  • Kum, S.M.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.427-438
    • /
    • 1994
  • This experimental study was earned out to examine the heat transfer characteristics of a 2-dimensional impinging air jet on a flat plate with a set of square rods. The objectives of the study were to investigate the flow and heat transfer characteristics caused by the square rods and to find out the optimum rods arrangement. Experiment was carried out first without using the rods to establish the baseline heat transfer performance. Then, rods of different widths and clearances were installed to cause the turbulence on the fluid flow.

  • PDF

A Study on Heat Transfer Characteristics of Impinging Jet about Distance Ratio leer Thermal Control (전열제어를 위한 충돌제트의 거리비에 따른 열전달특성에 관한 연구)

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1237-1243
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in eletronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are distance between nozz1e and heat source. Reynolds number is 6000.

  • PDF

A Study on Heat Transfer Characteristics of Impinging Jet Using Infared Thermal Image Processing System (적외선열화상처리장치를 이용한 충돌제트의 전열특성에 관한 연구)

  • Kim, D.K.;Bae, S.T.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.711-716
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in electronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are nozzle exit angle $(30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ})$ and distance between nozzle and heat source is fixed 6d("d" is diameter of circular nozzle(10 mm). Reynolds number is 4500.

  • PDF

Heat Transfer characteristics of distance between impinging surface and a plane jet (평면제트와 충돌면과의 거리변화에 따른 열전달 특성)

  • 김동건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.588-594
    • /
    • 1998
  • Heat transfer characteristics of distance between impinging surface and a plane jet were experi-mentally investigated. The local heat transfer coefficients were measured by a thermochromic liq-uid crystal(TLC) The jet Reynolds number studied was varied over the range from 10,000310 to 30,000310 the nozzle-to-plate distance (H/B) from 4 to 10. It was observed that the Nusselt number increases with Reynolds number the occurrence of the secondary peak in the Nusselt number is within the potential core region the potential core of the jet flow can reach the impinging surface so that the wall jet can a transition from laminar to turbulent flow resulting in a sudden increase in the heat transfer rate.

  • PDF