• Title/Summary/Keyword: Impingement

Search Result 711, Processing Time 0.021 seconds

Wall Impingement Behavior and Droplet Size Measurement in Diesel Spray (디젤분무의 벽면충돌거동 및 분무입경측정)

  • 이장희;김태권;최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.39-49
    • /
    • 1994
  • An experimental investigation was undertaken in a diesel spray to evaluate wall impingement behavior and droplet size distribution. Emphasis is placed on the possibility of the application for new combustion type which is based on OSKA-D type. Visualization were employed using optical scheme which was a spark shadowgraphy to observe the behavior of wall impingement caused by diesel spray vertically injected at the center of the combustion chamber. Droplet size measurements using Malvern system were made to quantify the visual observations with surface diameter of impingement. The effects of the surface dia. variation on the droplet size during injection with the wall impingement spray are discussed. It was found that for the wall impingement spray the droplet size becomes greatly small rather than the spray without the wall impingement and the droplet deposition rate of the injection fuel is decreased as the surface area of impingement becomes small.

  • PDF

Recent Progress of Spray-Wall Interaction Research

  • Lee Sang-Yong;Ryu Sung-Uk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1101-1117
    • /
    • 2006
  • In the present article, recent progress of spray-wall interaction research has been reviewed. Studies on the spray-wall interaction phenomena can be categorized mainly into three groups: experiments on single drop impact and spray (multiple-drop) impingement, and development of comprehensive models. The criteria of wall-impingement regimes (i.e., stick, rebound, spread, splash, boiling induced breakup, breakup, and rebound with breakup) and the post-impingement characteristics (mostly for splash and rebound) are the main subjects of the single-drop impingement studies. Experimental studies on spray-wall impingement phenomena cover examination of the outline shape and internal structure of a spray after the wall impact. Various prediction models for the spray-wall impingement phenomena have been developed based on the experiments on the single drop impact and the spray impingement. In the present article, details on the wall-impingement criteria and post-impingement characteristics of single drops, external and internal structures of the spray after the wall impact, and their prediction models are reviewed.

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

An Experimental Studies on Impingement Spray Characteristic in High Temperature and Pressure Chamber (고온고압용기에서 충돌분무 특성에 관한 실험적 연구)

  • 안병규;류호성;오은탁;송규근;정재연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.36-43
    • /
    • 2002
  • The characteristics of spray has much effect on performance and emissions for automobile, diesel engine, gas turbine and combustion engines. So spray behavior after impinging the wall is very important for prediction the engine performance. This studies examined about impingement spray considering ambient density(18,24,30kg/ms), temperature(293,473K), impingement angle(0,30,45°). The images of impingement spray were obtained by the high speed video camera. After that we analyzed impingement spray characteristics to use this images. In this experiment, we found that 1) The spray width is reduced by increasing the ambient gas density and temperature,2) The growth of downstream is increased by increasing the impingement angle.

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

A study on the characteristics of gasoline spray to impinge on wall (벽면에 충돌하는 가솔린 분무의 특성에 관한 연구)

  • Lee, G.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Even though a relatively complete knowledge base has been established for diesel sprays, much of the knowledge cannot be directly translated to correlate the characteristics of gasoline spray. The macroscopic characteristics of gasoline impingement spray was investigated with photographic and image processing technique by Particle Motion Analysis System. The injector with single hole nozzle diameter of 0.28 mm was used in this experiment and the injection duration was selected as 10 msec. The injection pressure with 0.3, 0.35, and 0.4 MPa, impingement distance or 70, 100 and 130m, impingement angle or 0.15, 30 and $45^{\circ}$ were employed for the variables to affect the spray characteristics of impinging spray. It is clear that there is the analogy on the spray tip penetration between the gasoline impinging jet and diesel free jet. The spray tip penetration of impinging gasoline spray is proportional to the quarter power of the time after start of injection. The maximum height of impinging gasoline spray is also proportional to the quarter power of the time regardless of impingement distance, impingement angle and injection pressure. In addition, the effect of impingement angle on the spray tip penetration is significant according to the time after start of injection, even though there is minor effect in the initial stage of time after start of injection. Moreover, there is no remarkable effect of injection pressure on the spray tip Penetration under the experimental condition used in this study.

  • PDF

Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry (벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF

Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine (직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석)

  • Kim, Man-Shik;Min, Kyoung-Doug;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

Anterior Impingement Syndrome of the Ankle (발목 관절의 전방 충돌 증후군)

  • Sung, Ki-Sun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.15 no.4
    • /
    • pp.195-200
    • /
    • 2011
  • Impingement syndrome of the ankle is defined as painful mechanical limitation of full ankle movement secondary to osseous and/or soft tissue abnormality. These conditions occur more commonly in active people and athletes probably because recurrent subclinical injury is an important factor in development of the syndrome. Impingement syndromes of the ankle are categorized according to their anatomical site around the ankle joint. Anterolateral, anterior and posterior impingement has been extensively described in the orthopaedic literature. The purpose of this article is to review the clinical feature and management of anterior impingement syndrome of the ankle.

Arthroscopic Decompression in Stage II Subacromial Impingement - Five to Twelve Years Follow up - (제 2단계 견봉하 충돌증후군에서 관절경적 감압술(5년에서 12년의 장기추시관찰 결과))

  • Choi Chong-Hyuk;OJ Ogilvie-Harris
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 1999
  • We investigated the effectiveness of arthroscopic decompression in stage Ⅱ subacromial impingement after long term follow up. Arthroscopic subacromial decompression was done in 104 consecutive patients who had stage Ⅱ sub­acromial impingement. After average of 8.4 years follow up, the final results were as following; 57 shoulders(55%) in excellent, 25(24%) in good, 16(15%) in fair and 6(6%) in poor. All parameters-pain, function, muscle strength and motion-were improved significantly(p<0.00l). Rotator cuff tear was developed in 10 shoulders after decompression. Among them, 8 shoulders had unfavorable results including two poor. In 6 failures, two had rotator cuff tear, three had recurrence of impingement with degenerative change and reflex sympathetic dystrophy was developed in one. Reoperations were done in 4 shoulders. Improvement of impingement symptoms was maintained in the most of patients(79%) after long term follow up. Arthroscopic decompression surgery was very effective means for stage Ⅱ impingement syndrome.

  • PDF