• Title/Summary/Keyword: Imperviousness

Search Result 34, Processing Time 0.023 seconds

Sensitivity analysis of effective imperviousness estimation for small urban watersheds (도시 소유역 유효불투수율의 민감도 분석)

  • Kim, Dae Geun;Ko, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • In this study, a runoff hydrograph and runoff volume were calculated by using the kinetic wave theory for small urban watersheds based on the concept of low impact development(LID), and the effective imperviousness was estimated based on these calculations. The degree of sensitivity of the effective imperviousness of small watersheds to the impervious to pervious area ratio, infiltration capability, watershed slope, roughness coefficient and surface storage depth was then analyzed. From this analysis, the following conclusions were obtained: The effective imperviousness and paved area reduction factor decreased as the infiltration capability of pervious area increased. As the slope of watersheds becomes sharper, the effective imperviousness and the paved area reduction factor display an increasing trend. As the roughness coefficient of impervious areas increases, the effective imperviousness and the paved area reduction factor tend to increase. As the storage depth increases, the effective imperviousness and the paved area reduction factor show an upward trend, but the increase is minimal. Under the conditions of this study, it was found that the effective imperviousness is most sensitive to watershed slope, followed by infiltration capability and roughness coefficient, which affect the sensitivity of the effective imperviousness at a similar level, and the storage depth was found to have little influence on the effective imperviousness.

The Watershed Imperviousness Impact for the characteristic of stormwater runoff (유역의 불투수성에 따른 강우유출특성 비교)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Huh, Beom-Nyung;Choi, Ji-Yong;Kim, Yeong-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • The purpose of this study is to understand imperviousness impact for the characteristics of stormwater runoff and water temperature. The land-use map was used to estimate the watershed imperviousness(percent of impermeable area) and the RMS(Remote Monitoring System) was used to evaluate the stormwater runoff of watershed. This study was investigated for two streams(Jiam and Gongji) in Chunchon City. The detailed results of these studies are as follows; The imperviousness(%) of two watersheds(Jiam and Gongji) estimated by spatial analysis which is main function of GIS were 0.24% and 24.16%. So, Gongji watershed as urban area was about 100 times than jiam watershed as forest area. In case of rainfall of low intensity, stormwater runoff flowrate in higher imperviousness area(Gongji) was more than it in forest area(jiam). Also, The time to peak flowrate(Tp) was short in Gongji stream and the water temperature difference between Gongji and Jiam stream was about $4.4^{\circ}C$ in summer.

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Derivation of rainfall threshold for urban flood warning based on the dual drainage model simulation

  • Dao, Duc Anh;Kim, Dongkyun;Tran, Dang Hai Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.141-141
    • /
    • 2021
  • This study proposed an equation for Rainfall Threshold for Flood Warning (RTFW) for urban areas based on computer simulations. First, a coupled 1D-2D dual-drainage model was developed for nine watersheds in Seoul, Korea. Next, the model simulation was repeated for a total of 540 combinations of the synthetic rainfall events and watershed imperviousness (9 watersheds × 4 NRCS Curve Number (CN) values × 15 rainfall events). Then, the results of the 101 simulations with the critical flooded depth (0.25m-0.35m) were used to develop the equation that relates the value of RTFW to the rainfall event temporal variability (represented as coefficient of variation) and the watershed Curve Number. The results suggest that 1) the rainfall with greater temporal variability causes critical floods with less amount of total rainfall; and that 2) the greater imperviousness requires less rainfall to have critical floods. For validation, the proposed equation was applied for the flood warning system with two storm events occurred in 2010 and 2011 over 239 watersheds in Seoul. The results of the application showed high performance of the warning system in issuing the flood warning, with the hit, false and missed alarm rates at 68%, 32% and 7.4% respectively for the 2010 event and 49%, 51% and 10.7% for the event in 2011.

  • PDF

Characteristics of EMCs for Roof Runoff (강우시 지붕유출수의 EMCs 및 특성비교)

  • Hong, Jung Sun;Geronimo, Franz Kevin F.;Mercado, Jean Margaret R.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.657-665
    • /
    • 2012
  • The development projects distort the natural water circulation system and increase the non-point source pollution by changing the natural cover type. The low impact development (LID) techniques are considering as new development approach to decrease the ecological- and hydrological impacts from high imperviousness rate. The high imperviousness rate is because of the construction of building, parking lot and road for human activities. Knowing the basic characteristics of rood runoff can give the direction for setting up the water management strategy. The monitoring results show the pollutant EMCs of roof runoff are 3~13 times lower than EMCs of the road and parking lot. The pollutant sources from roof runoff are mainly from leafs, cigarette butts, atmospheric deposition and materials of the roof. The EMC is occurred around 15minutes later after starting runoff and more than 8 storm events are needed to have the average EMCs.

Effectiveness of Continuous Deflective Separation System to Control Nonpoint Source Pollution from Urban Areas (도시지역 비점오염원 관리를 위한 와류필터형 처리시설의 효율성 연구)

  • Park, Jong-Sik;Koh, Jeung-Hyun;Kim, Sang Keun;Chung, Ha-Ik
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.88-98
    • /
    • 2007
  • The control of nonpoint source pollution from the urban paved areas with high imperviousness in is required to improve the water quality of aquatic resources. This research investigated the characteristics of urban runoffs and evaluate the effectiveness of the continuous deflective separation systems for stormwater best management practice. The systems were installed in the vicinity of a high-level road, an apartment complex, and the Cheonggye stream. Stormwater runoff was sampled in these sites. Biochemical oxygen demand ($BOD_5$), total suspended solid (TSS), total nitrogen (T-N), and total phosphorus (T-P) were analyzed. The removal efficiency of $BOD_5$, TSS, and T-P for the road was 10.9-81.0%, 11.7-93.4%, 0-37.5%, respectively. That of $BOD_5$, TSS, T-N, and T-P for the complex was 12.5-65.8%, 26.5-77.6%, 1.8-28.7%, and 20.0-37.5%, respectively. The abatement efficiency $BOD_5$, TSS, T-N, and T-P for the stream was 7.2-85.2%, 41.7-98.2%, 11.3-65.6%, and 2.0-71.5%, respectively. This study shows that the systems can be used to remove $BOD_5$ and TSS from urban runoffs efficiently.

Comparison of Water Characteristics of Cleaning Wastewater and Stormwater Runoff from Highways (고속도로 청소폐수와 노면유출수의 수질특성 비교)

  • Lee, Ju-Goang;Lee, Eui-Sang
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.169-176
    • /
    • 2007
  • The paved areas in nonpoint source are highly polluted landuses because of high imperviousness and pollutant mass emissions, such as sand, cereals, and dust from vehicle activities. Most of them in highways are collected by cleaning trucks or discharged to the adjacent soil and water system through the drain ditch in stormwater. Therefore, it is necessary to investigate the relationship between water concentration and total pollutant loadings from the paved areas. From the experiment, CODcr concentration of the cleaning wastewater was 17 times greater than that of the stormwater runoff. Also, concentrations of heavy metals (Cu, Fe, Zn) were 1.3 to 1.5 times higher when compared to the stormwater runoff. While total discharged loadings was insignificant in the cleaning wastewater. In conclusion, these results provide some evidence that the stormwater runoff may be managed carefully to the aspect of total pollutant loadings and the cleaning wastewater may be handled cautiously with the pollutant concentrations in highways.

Extraction of Spatial Characteristics of Cadastral Land Category from RapidEye Satellite Images

  • La, Phu Hien;Huh, Yong;Eo, Yang Dam;Lee, Soo Bong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.581-590
    • /
    • 2014
  • With rapid land development, land category should be updated on a regular basis. However, manual field surveys have certain limitations. In this study, attempts were made to extract a feature vector considering spectral signature by parcel, PIMP (Percent Imperviousness), texture, and VIs (Vegetation Indices) based on RapidEye satellite image and cadastral map. A total of nine land categories in which feature vectors were significantly extracted from the images were selected and classified using SVM (Support Vector Machine). According to accuracy assessment, by comparing the cadastral map and classification result, the overall accuracy was 0.74. In the paddy-field category, in particular, PO acc. (producer's accuracy) and US acc. (user's accuracy) were highest at 0.85 and 0.86, respectively.

Effects of the ground water level on the stability of an underpass structure considering the degree of surface imperviousness (지표면 유출 특성을 고려한 지하수위 변화가 지하차도 구조물 안정성에 미치는 영향)

  • Jo, Seon-Ah;Hong, Eun-Soo;Cho, Gye-Chun;Jin, Kyu-Nam;Lee, Jung-Min;Han, Shin-In
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.95-107
    • /
    • 2016
  • Ground water is one of important parameters in the designs of underpass structures because urban areas are characterized by soil ground which is relatively permeable than rock ground and a high level of ground water due to low elevation. Therefore, it is important properly to predict variations of the ground water when they can affect underpass structures. In this study, a series of numerical analyses are performed to predict the variations of ground water levels considering the degree of surface imperviousness and LID(Low Impact Development) application. In turn the stability of underground structure is assessed using predicted ground water level. The results show that an increase in the impervious surface area decreases the ground water level. The application of permeable pavement as a LID facility increases the ground water level, improving the infiltration capacity of rainfall into the ground. Seasonal variations of the ground water level are also verified in numerical simulation. The results of this study suggest that reasonable designs of underpass structures can be obtained with the suitable prediction and application of the ground water level considering the surface characteristics.

Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City

  • Kang, Min Jo;Mesev, Victor;Myint, Soe W.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.399-415
    • /
    • 2014
  • The intensity of stormwater runoff is particularly acute across cities located in arid climates. During flash floods loose sediment and pollutants are typically transported across sun-hardened surfaces contributing to widespread degradation of water quality. Rapid, dense urbanization exacerbates the problem by creating continuous areas of impervious surfaces, perforated only by a few green patches. Our work demonstrates how the latest techniques in remote sensing can be used to routinely measure urban land cover types, impervious cover, and vegetated areas. In addition, multiple regression models can then infer relationships between urban land use and land cover types with stormwater quality data, initially sampled at discrete monitoring sites, and then extrapolated annually across an arid city; in our case, the city of Phoenix in Arizona, USA. Results reveal that from 30 storm event samples, solids and heavy metal pollutants were found to be highly related with general impervious surfaces; in particular, with industrial and commercial land use types. Repercussions stemming from this work include support for public policies that advocate environmental sustainability and the more recent focus on urban livability. Also, advocacy for new urban construction and re-development that both steer away from vast unbroken impervious surfaces, in place of more fragmented landscapes that harmonize built and green spaces.