• Title/Summary/Keyword: Impedance mismatch

Search Result 68, Processing Time 0.023 seconds

Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines (마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성)

  • Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.329-333
    • /
    • 2011
  • To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

Optimization Study for Material Properties of Piezoelectric Material Using Parameter Estimation Method: Part I. Polycrystal PZT Ceramics (매개변수 평가법을 이용한 압전재료의 재료물성 최적화 연구 Part I. 다결정 PZT 세라믹스)

  • Shin, Ho-Yong;Lee, Ho-Yong;Hong, Il-Gok;Kim, Jong-Ho;Im, Jong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.471-479
    • /
    • 2022
  • Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.

A Cost-Effective 40-Gb/s ROSA Module Employing Compact TO-CAN Package

  • Kang, Sae-Kyoung;Lee, Joon Ki;Huh, Joon Young;Lee, Jyung Chan;Kim, Kwangjoon;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we present an implemented serial 40-Gb/s receiver optical subassembly (ROSA) module by employing a proposed TO-CAN package and flexible printed circuit board (FPCB). The TO-CAN package employs an L-shaped metal support to provide a straight line signal path between the TO-CAN package and the FPCB. In addition, the FPCB incorporates a signal line with an open stub to alleviate signal distortion owing to an impedance mismatch generated from the soldering pad attached to the main circuit board. The receiver sensitivity of the ROSA module measures below -9 dBm for 40 Gb/s at an extinction ratio of 7 dB and a bit error rate of $10^{-12}$.

Fabrication and Characterization of the Transmitter and Receiver Modules for Free Space Optical Interconnection (자유공간 광연결을 위한 송수신 모듈의 제작및 성능 분석)

  • 김대근;김성준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.16-22
    • /
    • 1994
  • In this paper, transmitter and receiver modules for free space optical interconnection are implemented and characterized. In the transmitter module, bias circuitry which inject current into the direct modulated laser diode is fabricated and in the receiver module, p-i-n diode is integrated with an MMIC amplifying stage. Laser diode has a direct-modulated bandwidth of 2 GHz at 1.4 Ith bias while p-i-n diode and amplifying stage has a bandwidth of 1.3 GHz and 1.5 GHz, repectively. Optical interconnection has a bandwidth of 1.3 GHz and linearly transmit modulated voltage signal up to 1.5 Vp-p. Measured loss of optical interconnection is 5dB which is composed of optoelectronic conversion loss of 15 dB, electrical impedance mismatch loss of 6.7 dB in transmitter module and gain of 18 dB in receiver module. Seperation between transmitter and receiver can be extended up to 50 cm by using a lens.

  • PDF

Microwave characteristics of traveling-wave modulator considering the microwave feedline (마이크로파 feedline을 고려한 진행파형 광변조기의 특성 분석)

  • 구민주;옥성해;윤영설;문연태;김도균;최영완
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, we analyze the microwave characteristics of traveling-wave electro-absorption modulator (TW-EAM) considering the microwave feedline and the impedance mismatch. The TW-EAM is analyzed by using the equivalent circuit model. The capacitance and the inductance of the equivalent circuit are evaluated by using 3-dimensional finite difference time domain (FDTD) method, while the microwave feedline is analyzed by momentum method. In a viewpoint of microwave characteristics, we present the effect of the structure and the length of microwave feedline.

Design of Broadband Quasi-Yagi Antenna Using a Folded Dipole Driver

  • Ta, Son Xuat;Kim, Byoung-Chul;Choo, Ho-Sung;Park, Ik-Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper describes the development of a broadband quasi-Yagi antenna using a folded dipole driver. The antenna is designed on a low-permittivity substrate to reduce the surface wave effect, and hence the gain can be enhanced easily by adding directors. The folded dipole driver is connected to a 50-${\Omega}$ microstripline via a simple broadband microstrip-to-coplanar stripline transition with a quarter radial stub. The key motivation for the use of a folded dipole is to increase the input impedance at the driver, allowing a smaller mismatch loss between the antenna driver and the coplanar stripline feed. The proposed antenna has a measured bandwidth of 4.67~6.26 GHz for the -10 dB reflection coefficient, and a flat gain of 4.86~5.15 dB within the bandwidth.

Surface-Mountable 10 Gbps Photoreceiver Module Using Inductive Compensation Method

  • Kim, Sung-Il;Hong, Seon-Eui;Lim, Jong-Won;Moon, Jong-Tae
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.57-60
    • /
    • 2004
  • We propose an inductive compensation method for a surface-mountable 10 Gbps photoreceiver module. Since many typical 10 Gbps photoreceiver modules consist of a photodetector and low-noise pre-amplifier, the impedance mismatch between the photodetector and pre-amplifier, as well as package parasitics, may reduce the frequency bandwidth. In this paper, we inserted an inductive component between the photodetector and pre-amplifier in order to create frequency bandwidth expansion. From the measurement results, we have found that the proposed technique can increase the -3 dB bandwidth about 4.2 GHz wider compared with an uncompensated module. And, from a bit-error rate (BER) test, we observed -15.7 dB sensitivity at $10^{-12}$ BER. This inductive compensation can be implemented easily and is compatible with common manufacturing processes of photoreceiver modules.

  • PDF

SQL Based Persistence Framework (구조화질의언어 기반 퍼시스턴스 프레임워크)

  • Cho, Dong-il;Rhew, Sung-Yul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.463-466
    • /
    • 2007
  • 웹기반 기업형 어플리케이션은 객체지향 언어로 개발되고, 데이터의 관리는 RDB(Relational Database)를 이용하여 구축된다. 두 시스템은 이질적 패러다임에 기인하여 모델의 불일치성(object-relational impedance mismatch)을 발생시킨다. 이 문제를 해결하고자 사용되는 객체-관계 매핑 프레임워크(ORM-Framework)는 RDB 의 테이블과 객체지향 언어의 객체를 매핑하는 구조로 복잡한 메타정보를 이용하여 동적으로 매핑하기 때문에 개발이 복잡하고, 변경에 유연하지 못하여 유지보수에 많은 어려움이 있다. 본 논문에서는 기존 ORM 프레임웍크의 복잡성을 해소하고, 변경에 유연한 퍼시스턴스 프레임워크를 제안한다. 제안되는 프레임워크는 SQL 을 래핑하는 구조로 테이블과 객체의 메타정보가 불필요하고, 정형화된 구조를 가진 래퍼의 사용으로 소스코드를 자동 생성하여 개발 및 유지보수의 편의성을 제공하고, 변경에 유연하다. 제안 프레임워크는 Hibernate, iBATIS 와의 테스트 결과 구동 매커니즘이 거의 동일한 iBATIS 와는 처리속도가 비슷했고, Hibernate 의 약 3 배 빠른 속도를 보였다. 코딩량은 Hibernate 대비 1/9, iBATIS 대비 1/4 을 나타냈다.

  • PDF

Analysis of TTD Phase Delay Error and Its Effect on Phased Array Antenna due to Impedance Mismatch (위상 배열 안테나 임피던스 부정합에 따른 실시간 지연회로의 위상 지연 오차 및 영향 분석)

  • Yoon, Minyoung;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.828-833
    • /
    • 2018
  • It is well known that reflected waves and resonance affect phase distortion. In addition, phase delay can be distorted by antenna impedance. In this study, we analyze the phase delay variation caused by the antenna impedance, considering mutual coupling effects. In addition, we confirm the beam steering characteristics. When was -10 dB and -7 dB, the maximum phase delay error was $18.5^{\circ}$ and $26.5^{\circ}$, respectively. The Monte Carlo simulation with an eight-element linear array antenna demonstrated that the RMS error of the beam steering angle ranged from $0.19^{\circ}$ to $0.4^{\circ}$, and the standard deviation ranged from $0.14^{\circ}$ to $0.33^{\circ}$ when the beam steering angle was in the range of $0^{\circ}$ to $30^{\circ}$, with the uniformly distributed phase error of $18.5^{\circ}$ and $26.5^{\circ}$. The side lobe level increased from 0.74 dB to 1.21 dB by the phase error from the theoretical value of -12.8 dB, with a standard deviation of 0.31 dB to 0.51 dB. This is verified by designing an eight-element spiral array antenna.