• Title/Summary/Keyword: Impedance Model

Search Result 848, Processing Time 0.03 seconds

An equivalent Circuit Model of Transformer Coupled Plasma Source (축전 용량이 고려된 평판형 유도 결합 플라즈마 원의 등가회로 모델)

  • Kim, Jeong-Mi;Kwon, D.C.;Yoon, N.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1760-1762
    • /
    • 2002
  • In this work we develop an equivalent circuit model of TCP(transformer coupled plasma) source and investigate matching characteristic. The developed circuit model includes transmission line, standard-type impedance matching network and displacement current in the plasma source. The impedance of TCP is calculated by previously developed program for various source parameters and dependance of components of matching impedance on the value of source impedance is investigated.

  • PDF

Analysis on Electric Shock Current in DC Electricity (직류환경에서 인체에 흐르는 감전전류 분석)

  • Lee, Jin-Sung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.254-259
    • /
    • 2016
  • Recently, DC distribution systems have become a hot issue because of the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. To obtain the practical usage of DC electricity, safety should be guaranteed. The main concerns for safety are twofold: one side is human protection against electric shocks, and the other is facility protection from short faults. "Effects of current on human beings and livestock" (IEC 60479) defines a human body impedance model in electric shock conditions that consists of resistive components and capacitive components. Although the human body impedance model properly works in AC electricity, it does not well match with the electric shock behavior in DC electricity. In this study, the contradiction of the human body impedance model defined by IEC 60479 in case of DC electricity is shown through experiments for the human body. From the analysis of experimental results, a novel unified human body impedance model in electric shock conditions is proposed. This model consists of resistive components, capacitive components, and an inductance component. The proposed human impedance model matches well for AC and DC electricity environments in simulation and experiment.

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model (분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석)

  • Lee, Bok-Hee;Kim, Jong-Ho;Choi, Jong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.

Effects of a Human Impedance and a First-Order-Hold Method on Stability of a Haptic System with a Virtual Spring Model (인간 모델과 1차 샘플-홀드 방식이 가상 스프링 모델 시스템의 안정성에 미치는 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • When a human operator interacts with a virtual wall that is modeled as a virtual spring model, the lager the stiffness of the virtual spring is, the more realistic the operator feels that the virtual wall is. In the previous studies, it is shown that the maximum available stiffness of a virtual spring to guarantee the stability can be increased when the first-order-hold method is applied, however the effects of a human impedance on the stability are not considered. This paper presents the effects of a human impedance on stability of haptic system with a virtual spring and a first-order-hold (FOH) method. The human impedance model is modeled as a linear second-order system model. The relations between the maximum available stiffness of a virtual spring and the human impedance such as a mass, a damping and a stiffness are analyzed through the MATLAB simulation. It is shown that the maximum available stiffness is proportional to the square root of the human mass or damping respectively.

  • PDF

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF

A Study on the Electrochemical Impedance Spectroscopy and the Electrical Circuit Model for the Electrode/Electrolyte Interface (전극/전해질 계면의 전기화학적 임피던스 측정 및 전기회로 모델 연구)

  • Chang, Jong-Hyeon;Hong, Jang-Won;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.274-275
    • /
    • 2007
  • The investigation of the equivalent circuit models for the electrode/electrolyte interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.

  • PDF

Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model

  • Fan, Xingyu;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.501-523
    • /
    • 2016
  • Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.