• Title/Summary/Keyword: Impact-induced Damage

Search Result 138, Processing Time 0.026 seconds

Effect of Yanggyuksanhwa-tang on Pyramidal Neuron and HSP72 Expression in Ischemic Damaged Hippocampus of Aged BCAD Rats (노령 흰쥐의 뇌허혈 손상시 양격산화탕이 뇌해마의 신경세포 및 HSP72 발현에 미치는 영향)

  • Park Eun Kyung;Shin Jung Won;Sohn Young Joo;Jung Hyuk Sang;Won Ran;Sohn Nak Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.791-797
    • /
    • 2003
  • This study investigated the effect of Yanggyuksanhwa-tang on cerebral ischemia of the rats. Considering age-related impact on cerebral ischemia, aged rats (18 months old) were used for this study. Ischemic damage was induced by the transient occlusion of bilateral common carotid arteries (BCAO) under the hypotension. Yanggyuksanhwa-tang was administered twice orally. Then changes of pyramidal neurons and heat shock protein 72 (HSP72) expressions in ischemic damaged hippocampus were of observed. The BCAO in aged rats led significant decrease of pyramidal neurons in CA1 hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the reduction of pyramidal neurons in CA1 hippocampus following BCAO ischemia. The BCAO in aged rats led significant increase of HSP72 expression in CA1 and mild in CA3 hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of HSP72 expression in CA1 hippocampus following BCAO ischemia. The extent of HSP72 expression in CA2 and DG of hippocampus was not different between the sham operated group, the BCAO ischemia control group, and the group of Yanggyuksanhwa-tang administration after BCAO ischemia. The treatment of Yanggyuksanhwa-tang significantly attenuated the increase of normalized optical density depending on HSP72 expression in CA1 hippocampus following BCAO ischemia.

A Review on the Building Wind Impact through On-site Monitoring in Haeundae Marine City: 2021 12th Typhoon OMAIS Case Study

  • Kim, Jongyeong;Kang, Byeonggug;Kwon, Yongju;Lee, Seungbi;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.414-425
    • /
    • 2021
  • Overcrowding of high-rise buildings in urban zones change the airflow pattern in the surrounding areas. This causes building wind, which adversely affects the wind environment. Building wind can generate more serious social damage under extreme weather conditions such as typhoons. In this study, to analyze the wind speed and wind speed ratio quantitatively, we installed five anemometers in Haeundae, where high-rise buildings are dense, and conducted on-site monitoring in the event of typhoon OMAIS to determine the characteristics of wind over skyscraper towers surround the other buildings. At point M-2, where the strongest wind speed was measured, the maximum average wind speed in 1 min was observed to be 28.99 m/s, which was 1.7 times stronger than that at the ocean observatory, of 17.0 m/s, at the same time. Furthermore, when the wind speed at the ocean observatory was 8.2 m/s, a strong wind speed of 24 m/s was blowing at point M-2, and the wind speed ratio compared to that at the ocean observatory was 2.92. It is judged that winds 2-3 times stronger than those at the surrounding areas can be induced under certain conditions due to the building wind effect. To verify the degree of wind speed, we introduced the Beaufort wind scale. The Beaufort numbers of wind speed data for the ocean observatory were mostly distributed from 2 to 6, and the maximum value was 8; however, for the observation point, values from 9 to 11 were observed. Through this study, it was possible to determine the characteristics of the wind environment in the area around high-rise buildings due to the building wind effect.

Analysis for Steel Corrosion-Induced Damage in Cross-Section of Reinforced Concrete (철근부식에 의한 철근 콘크리트 단면의 손상 해석)

  • Jung-Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • In this study, a development of the rust formation arising from steel corrosion was modelled to quantify the structural impact in steel reinforced concrete. The interfacial gap, cover depth and diameter of steel rebar were taken for variables in modelling. It was found that the interfacial gap was the most influencing on the structural limit at steel corrosion, followed by steel diameter and cover depth. At 75 mm of cover depth with 20 mm of the steel diameter, the rust amount to reach cracking accounted for 16.95-27.69 ㎛ to 1-10 ㎛ of the interfacial gap. It was found that there was no risk of cracking and structural limit until the rust was formed within the interfacial gap. With a further formation of rust, the concrete section was successively behaved to yielding, cracking and failure. Additionally, the interfacial gap was the most dominant parameter for the rust amount to reach the cracking of concrete at the interfacial zone, whilst the cover depth had a marginal effect on cracking but had a crucial influence on the rust to failure.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Bone-Preserving Decompression Procedures Have a Minor Effect on the Flexibility of the Lumbar Spine

  • Costa, Francesco;Ottardi, Claudia;Volkheimer, David;Ortolina, Alessandro;Bassani, Tito;Wilke, Hans-Joachim;Galbusera, Fabio
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.680-688
    • /
    • 2018
  • Objective : To mitigate the risk of iatrogenic instability, new posterior decompression techniques able to preserve musculoskeletal structures have been introduced but never extensively investigated from a biomechanical point of view. This study was aimed to investigate the impact on spinal flexibility caused by a unilateral laminotomy for bilateral decompression, in comparison to the intact condition and a laminectomy with preservation of a bony bridge at the vertebral arch. Secondary aims were to investigate the biomechanical effects of two-level decompression and the quantification of the restoration of stability after posterior fixation. Methods : A universal spine tester was used to measure the flexibility of six L2-L5 human spine specimens in intact conditions and after decompression and fixation surgeries. An incremental damage protocol was applied : 1) unilateral laminotomy for bilateral decompression at L3-L4; 2) on three specimens, the unilateral laminotomy was extended to L4-L5; 3) laminectomy with preservation of a bony bridge at the vertebral arch (at L3-L4 in the first three specimens and at L4-L5 in the rest); and 4) pedicle screw fixation at the involved levels. Results : Unilateral laminotomy for bilateral decompression had a minor influence on the lumbar flexibility. In flexion-extension, the median range of motion increased by 8%. The bone-preserving laminectomy did not cause major changes in spinal flexibility. Two-level decompression approximately induced a twofold destabilization compared to the single-level treatment, with greater effect on the lower level. Posterior fixation reduced the flexibility to values lower than in the intact conditions in all cases. Conclusion : In vitro testing of human lumbar specimens revealed that unilateral laminotomy for bilateral decompression and bone-preserving laminectomy induced a minor destabilization at the operated level. In absence of other pathological factors (e.g., clinical instability, spondylolisthesis), both techniques appear to be safe from a biomechanical point of view.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Alteration of Neural Activity and Effect of Yanggyuksanhwa-tang(Lianggesanhuo-tang) on Cerebral Ischemia of Aged BCAO Rats; [$^{14}C$]2-Deoxyglucose Autoradiography Study (노령 흰쥐의 뇌허혈 손상시 뇌대사활성의 변화 및 량격산화탕의 영향에 대한 [$^{14}C$2-Deoxyglucose Autoradiography 연구)

  • Sohn, Cheol-Hoon;Shin, Jung-Won;Sohn, Young-Joo;Jung, Hyuk-Sang;Won, Ran;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.51-64
    • /
    • 2003
  • Objective : This study investigated the alteration of neural activity and effect of Yanggyuksanhwa-tang (Lianggesanhuo-tang) on cerebral ischemia of rats. Methods : Considering age-related impact on cerebral ischemia, aged rats (18 months old) were used for this study. Ischemic damage was induced by the transient occlusion of bilateral common carotid arteries (BCAO) with hypotension. Yanggyuksanhwa-tang (Lianggesanhuo-tang) was administered twice a day orally. Then alterations of neural activities in the brain of aged BCAO rats were measured by the [$^{14}C$]2-deoxyglucose autoradiography method. Results : The BCAO in aged rats led to significant decrease of neural activity in the whole brain. Treatment with Yanggyuksanhwa-tang (Lianggesanhuo-tang) significantly attenuated the decrease of neural activity in the whole brain following BCAO ischemia. Treatment significantly attenuated the decrease of neural activity in the CA1, CA2, CA3, dentate gyrus of the hippocampus, activated barrel, barrel cortex, somatosensory cortex, cingulate cortex, caudate putamen, and medial septal nucleus following BCAO in aged rats. Treatment with Yanggyuksanhwa-tang (Lianggesanhuo-tang) also significantly attenuated the decrease of neural activity in the anteroventral thalamic nucleus, ventral anterior thalamic nucleus, arcuate nucleus, posterior hypothalamic area, medial mammillary nucleus, lateral periaqueductal gray, dorsal raphe nucleus, interpeduncular nucleus, median raphe nucleus, and medial pontine nucleus. Conclusion : It can be suggested that Yanggyuksanhwa-tang (Lianggesanhuo-tang) has a neuroprotecuve effect on cerebral ischemia through the control of glucose metabolic rate and cerebral blood flow.

  • PDF

New Fact and Experience About The Tennis Lesson Using Tool (도구를 활용한 테니스 교수법이 가져다준 새로운 사실과 경험)

  • Shin, Myoung-Jin;Shim, Yun-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.388-397
    • /
    • 2012
  • The tennis was one of the most popular sport in the general physical education lesson. However there are many problems such as difficult of improvement tennis skill, lack of class days and so many students in a class. These reasons could ultimately damage the overall quality of class. The purpose of this research was to beginner students was fun and easy to learn. The tennis lesson using tools were 1.selective hitting ball, 2. high net hitting ball, 3. hitting orange ball. Scores of the experimental group(n=23) and the control group(n=21) were compared. In order to verify course content was the same 15 weeks, conducted a tennis teaching methods to take advantage of the tools. And tools to take advantage of the students who participated in a class analysis of the qualitative data (interviews, documents, questionnaires, observations, journals). As a result, the satisfaction scores of the experimental group were higher than those of the control group. The tennis lesson using tools to take positive effect(meaning, improved skill, easy, fun/curious/confident) and negative effect(difficulties of adaptation, a high challenge level) was induced. In summary of the quantitative/qualitative data 'Orange Ball' has a positive impact on the girls than boys and teaching methods using tools gave generally positive influence to students.