• 제목/요약/키워드: Impact wave

검색결과 810건 처리시간 0.026초

6-방정식 확산경계 모델을 이용한 압축성 고체 및 액체에서 충격파 해석 (NUMERICAL ANALYSIS OF THE SHOCK WAVES IN COMPRESSIBLE SOLIDS AND LIQUIDS USING A SIX-EQUATION DIFFUSE INTERFACE MODEL)

  • 염금수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.99-107
    • /
    • 2012
  • In this paper, the shock waves in compressible solids and liquids are simulated using a six-equation diffuse interface multiphase flow model that is extended to the Cochran and Chan equation of state. A pressure relaxation method based on a volume fraction function and a pressure-correction equation are newly implemented to the six-equation model. The developed code has been validated by a shock tube problem with liquid nitromethane and an impact problem of a copper plate on a solid explosive. In addition, a new problem, an impact of a copper plate on liquid nitromethane, has been solved. The present code well shows the wave structures in compressible solids and liquids without any numerical oscillations and overshoots. After the impact of a solid copper plate on liquid, two shock waves (one propagates into liquid and the other into solid) are generated and a material interface moves to the impacting direction. The computational results show that the shock velocity inside the liquid linearly increases with the impact velocity.

시공 중 수중터널 벌크헤드에 작용하는 충격쇄파압 - 수치해석 및 수리모형실험 - (Wave Impact Pressures Acting on the Underwater Tunnel Bulkhead under Construction - Numerical Analysis and Hydraulic Model Experiment -)

  • 김선신;안동혁;전인식
    • 한국해안·해양공학회논문집
    • /
    • 제23권2호
    • /
    • pp.139-146
    • /
    • 2011
  • 충격쇄파압은 권파성 파랑이 구조물 전면에 갑자기 충돌할 때 발생하며 접촉면에서 공기포켓의 생성여부에 따라 충격쇄파압의 작용특성이 달라진다. 수괴의 직접적인 충돌에 따른 Wagner형은 접촉면에서 단일 압력 첨두치를 보이는 반면, Bagnold형은 공기포켓의 진동에 의하여 비접촉면에서도 압력의 첨두치를 보이는 특성이 있다. 본 연구에서는 시공 중의 수중터널 벌크헤드의 배면(육측면)에 발생하는 충격쇄파압을 고찰하였다. Navier-Stokes 방정식을 직접 푸는 수치해석을 적용하여 벌크헤드 인근에 발생하는 쇄파를 모의한 결과, 벌크헤드의 배면에서 강한 Bagnold형 충격쇄파압이 발생함을 확인하였다. 본 충격쇄파압의 존재는 동일 조건에 대하여 수행한 수리모형실험에 의해서도 확인되었으며, 실험결과와 수치해석결과가 대체적으로 유사한 성향을 보임을 확인하였다.

CFD Simulation about Green Water on a Fixed FPSO in Regular Waves

  • Ha, Yoon-Jin;Nam, Bo Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.174-183
    • /
    • 2017
  • Numerical simulations were performed about the green water problem of a FPSO. Three regular waves in head sea were tested. A rectangular box-shaped FPSO was considered and it is assumed there is a vertical wall on the deck. For the numerical simulations, an open-source CFD code, OpenFOAM, was applied to solve the present problems. Focus is on wave fields around the FPSO, water flows and impact pressures on the deck. For the validation, the present calculation results were compared with the existing experimental of Lee et al. (2012) and Changwon university in KTTC Cooperative Study Report (2015). The statistical values and spatial distribution of the peak pressures are directly compared with the experimental data. Some discussions are made on the effects of the domain breadth on the Green water impact pressure.

Concrete compressive strength identification by impact-echo method

  • Hung, Chi-Che;Lin, Wei-Ting;Cheng, An;Pai, Kuang-Chih
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.49-56
    • /
    • 2017
  • A clear correlation exists between the compressive strength and elastic modulus of concrete. Unfortunately, determining the static elastic modulus requires destructive methods and determining the dynamic elastic modulus is greatly complicated by the shape and size of the specimens. This paper reports on a novel approach to the prediction of compressive strength in concrete cylinders using numerical calculations in conjunction with the impact-echo method. This non-destructive technique involves obtaining the speeds of P-waves and S-waves using correction factors through numerical calculation based on frequencies measured using the impact-echo method. This approach makes it possible to calculate the dynamic elastic modulus with relative ease, thereby enabling the prediction of compressive strength. Experiment results demonstrate the speed, convenience, and efficacy of the proposed method.

A Contact Algorithm in the Low Velocity Impact Simulation with SPH

  • Min, Oak-Key;Lee, Jeong-Min;Kim, Kuk-Won;Lee, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.705-714
    • /
    • 2000
  • The formulation of Smoothed Particle Hydrodynamics (SPH) and a shortcoming of traditional SPH in contact simulation are presented. A contact algorithm is proposed to treat contact phenomenon between two objects. We describe the boundary of the objects with non-mass artificial particles and set vectors normal to the contact surface. Contact criterion using non-mass particles is established in this study. In order to verify the contact algorithm, an algorithm is implemented in to an in-house program; elastic wave propagation is an analysed under low velocity axial impact of two rods. The results show that the contact algorithm eliminates the undesirable phenomena at the contact surface; numerical result with the contact algorithm is compared with theoretical one.

  • PDF

진공회로차단기용 횡자계방식 접점의 충격해석 (Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker)

  • 박우진;안길영;오일성;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

탄환 충격파 측정용 방수 음향센서 개발 (Development of Waterproof Acoustic Sensor for Shockwave Measurement)

  • 허신;이덕규
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.

동해안 너울 사고 특성 분석 및 대응방안 수립 (A Study on Characteristics Analysis of Swell Wave Accidents and the Establishment of Countermeasures in the East Coast)

  • 황순미;오형민;강태순;남수용
    • 한국해안·해양공학회논문집
    • /
    • 제30권6호
    • /
    • pp.235-241
    • /
    • 2018
  • 2013년부터 2017년까지 5년간 우리나라 동해안에서 발생한 너울에 의한 사고 사례를 수집하였다. 사고발생역, 발생계절, 발생해안종류, 피해대상별로 분류하고, 사고 당시의 인근지역 파랑관측자료를 수집하여 사고와 파랑자료와의 상관성을 분석하였다. 또한 국립해양조사원의 연안재해취약성 평가 결과에 기반하여 너울 사고 발생지점의 취약성 등급을 분석하였다. 너울 사고지역은 파랑노출지수의 평균등급이 4.91, 파랑민감도지수는 3.87, 종합평가결과인 파랑영향지수는 4.90으로 높게 나타났다. 이에 대부분 너울 사고가 파랑영향지수 5등급에서 발생한 것에 기인하여 동일 등급으로 평가된 동해안 지역(78.7%)을 대상으로 파랑민감도지수와 연계하여 지역을 분류하고 각 지역의 특성에 맞는 대응방안을 마련하였다.

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF