• Title/Summary/Keyword: Impact velocity

Search Result 1,361, Processing Time 0.027 seconds

Automobile Collision Reconstruction Using Post-Impact Velocities and Crush Profile (충돌 후 속도와 충돌 변형으로부터 자동차 충돌 재구성)

  • 한인환
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.107-115
    • /
    • 2000
  • We suggest a method which solves the planar, two vehicle collision reconstruction problem. The method based on the Principle of impulse and momentum determines the pre-impact velocity components from Post-impact velocity components, vehicle Physical data and collision geometry. A novel feature is that although the impact coefficients such as the restitution coefficient and the impulse ratio are unknown, the method can estimate automatically the coefficients and calculate the pre-impact velocity components. This reverse calculation is important for vehicle accident reconstruction, since the pre-impact velocities are unknown and Post-impact Phase is the starting Point in a usual collision analysis. However. an inverse solution is not always Possible with the analytical rigid-body impact model. Mathematically, one does not exist under the common velocity condition. On the other hand, our method has a capability of reverse calculation under the condition if the absorbed energy during the collision process can be estimated using the crush profile. To validate the developed collision reconstruction a1gorithm, we use car-to-car collision test results. The analysis and experimental results agree well in the impact coefficients and the Pre-impact velocity components.

  • PDF

Experimental and numerical investigation into the damage response of composite sandwich panels to low-velocity impact

  • Feng, Dianshi;Aymerich, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.133-151
    • /
    • 2017
  • The paper describes the results of an experimental and numerical investigation into the structural and damage response of sandwich composites to low-velocity impact. Sandwich panels consisting of laminated composite skins with three different layups bonded to a PVC foam core were subjected to impact at various energy levels corresponding to barely visible impact damage (BVID) in the impacted skins. Damage assessment analyses were performed on the impacted panels to characterise the extent and the nature of the major failure mechanisms occurring in the skins. The data collected during the experimental analyses were finally used to assess the predictive capabilities of an FE tool recently developed by the authors for detailed simulation of impact damage in composite sandwich panels. Good agreement was observed between experimental results and model predictions in terms of structural response to impact, global extent of damage and typical features of individual damage mechanisms.

Low velocity impact characteristics on environmental variation of composite laminates used in the light rail transit (경량전철 복합 적층판의 환경변화에 대한 저속충격특성)

  • 김후식;김재훈;이영신;박병준;조정미
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.86-91
    • /
    • 2002
  • Glass/phenolic composite laminates have been used in the field of non-flammable light rail transit and their applications have expanded more widely. Low velocity impact tests have been used to evalute the effect of temperature and acceleration aging on low velocity impact response of phenolic matrix composites reinforced with woven E-glass fabric. The damage of matrix cracking and delamination are suddenly reduced the compressive strength after impact. The damage area increases with increasing temperature and impact energy. UT C-scan is used to determine damage areas by impact loading. Therefore, all this observations indicate reduced impact damage resistance and damage tolerance of the laminates at elevated temperature.

  • PDF

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Design and Development of Electromagnetic Launcher for Low-High Velocity Impact Test (중고속 충돌 실험을 위한 전자기력 발사장치의 설계와 제작)

  • Kim, Hong Kyo;Noh, Hak Gon;Kang, Beom Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.857-864
    • /
    • 2016
  • Many plane, UAV and drone fly in the sky as development of aviation industry. Plane and UAV fly and drone's propellers rotate so fast. Impact between flying objects which have high velocity threats passengers. Also the impact damages people, building and various property. Plane's operating speed is near sound velocity(340m/s), and propeller's rotating speed is less than that. Until now, impact experiment uses gas gun to get speed and the gun needs large space to entirely air expansion. Electromagnetic launcher, especially railgun, needs smaller space than gas gun to get enough speed about 500m/s. This paper explains electromagnetic launcher's operating principle, shows making electromagnetic launcher design guide line and suggests that it is a better apparatus to get low-high velocity.

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass (표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구)

  • Suh, Chang-Min;Chung, Seong-Muk;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.