• Title/Summary/Keyword: Impact velocity

Search Result 1,361, Processing Time 0.026 seconds

Response of rotational parameter in the stagnation point with motile microorganism: Unsteady nanofluid

  • Mohamed A. Khadimallah;Imene Harbaoui;Sofiene Helaili;Abdelhakim Benslimane ;Humaira Sharif ;Muzamal Hussain;Muhammad Nawaz Naeem;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.241-249
    • /
    • 2023
  • The unsteady mixed convection Casson type MHD nanofluid flow in the stagnation point with motile microorganism around a spinning sphere is investigated. Time dependent flow dynamics is considered. Similarity transformations have been employed to transfer the governing partial differential structure into ordinary differential structure. The impact of distinct parameters is examined via tables and graphs. The impact of rotational parameter (spin) on profiles of velocity profiles, temperature and concentration is revealed for unsteady mixed convection Casson type MHD nanofluid flow. It is observed that it is clear that rotational parameter has a great effect on non-dimensional primary velocity component but rotational parameter has a slight impact on non-dimensional secondary velocity component. The validity of the current investigation is authorized through comparing the existing outcomes with previous published literature.

Numerical Analysis of SMA Hybrid Composite Plate Subjected to Low-Velocity Impact

  • Kim, Eun-Ho;Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • The fiber reinforced laminated composite structures are very susceptible to be damaged when they are impacted by foreign objects. To increase the impact resistance of the laminated composite structures, shape memory alloy(SMA) thin film is embedded in the structure. For the numerical impact analysis of SMA hybrid composite structures, SMA modeling tool is developed to consider pseudoelastic effect of SMAs. Moreover, the damage analysis is considered using failure criteria and a simple damage model for reasonable impact analysis. The numerical results are verified with the experimental ones. Impact analyses for composite plate with pre-strained SMAs are numerically performed and the damage areas are investigated.

Development of Side Impact Crash Simulation Methodology and Its Applications (측면충돌모의시험 방법 개발과 응용)

  • 하영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Occupant protection in the side impact of a car became one of the most important issues of car crashworthiness due to high injury level in a side impact crash. An accurate simulation of the side impact crash is an essential tool for the reduction of development time and cost for side impact safety system. This paper describes a new test methodology that can accurately generate the crash pulses of a vehicle and a door in a very cost-effective manner, and then evaluates the injury values of the dummy for the various sled pulses. This test methodology is simple and easy to approach because the door velocity is controlled by the hydraulic actuator and brake and the seat velocity is only adjusted by the friction force of the hydraulic brake. The superiority of the proposed test methodology is proven by the evaluation of dummy's injury values according to the change of the pressure of the hydraulic brake and by the application as a tool for the development of side airbag.

  • PDF

A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact (고무보강 폴리머 재료의 저속 충격 해석)

  • 구본성;박명균;박세만
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF

Estimation of damage for composite laminates using sound pressure (음압을 이용한 복합 적층판의 손상평가)

  • Kim, Sung-Joon;Lee, Sang-Wook;Chae, Dong-Chul;Kim, Sung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.503-507
    • /
    • 2004
  • The radiated sound pressure induced by low-velocity impact is obtained by solving the Rayleigh integral equation. This paper established the sound analysis procedure using impact analysis model. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. The impact response is computed using the spring-mass model. And the influence of damage on the sound pressure and impacted force history of laminated were investigated. The results show that both radiated sound pressure and impact force history are strongly influenced by damage on laminated.

  • PDF

Low-velocity Impact Characterization of Laminated Composite Materials (복합재료의 저속충격 특성)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.34-37
    • /
    • 2008
  • The composite materials are widely used in the many applications of industry as well as aerospace field because of their high specific stiffness and strength which benefits the material and provides potential energy savings. However, composite materials also have a low property about external applied impact. In this paper, impact tests were conducted on different sample types(glass, carbon and kevlar composite) to obtain information such as absorbed energy and composite deformation using an instrumented impact test machine (DYNATUP 8250). 3 type samples were compared to experimental results. The data from impact test provided valuable information between the different type samples by wet lay up. This paper shows results of that kevlar composite has larger absorption energy and deformation than others.

Analysis of the residual strengths and failure mechanisms in laminated composites under impact loading

  • Park, K.C.;Kim, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.3
    • /
    • pp.105-121
    • /
    • 1994
  • In this paper, we proposed the two-parameter model for predicting the residual strength in CFRP laminated composites subjected to high velocity impact and developed and formulated it based upon Cparino's by using the ratio of impact and the normalized residual strength. Critical indentation was obtained by the statical indentation tests. Impact tests were carried out through air-gun type impact equipment with the velocities varied 30-100m/sec. Projectiles were steel balls with 5 and 7mm in diameter. Test material was carbon/epoxy. The specimens were composed of [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$\_$2/ and [ .+-. 45 .deg. ]$\_$4/stacking sequences and had 0.75$\^$T/*0.26$\^$W/*100$\^$L/(mm) dimension. Results from the proposed model were in good agreement with the test data. And failure mechanism due to high velocity impact is given here to examine the initation and deveolpment of damage by fractography and ultrasonic image system. The effects of the 0 .deg. -direction ply position and the amount to damage area on the residual strength are considered here.

Acceleration Signal Characteristics of Steel Plate Impacted by Metallic Loose Parts (금속파편충격에 의한 강판의 가속도신호 특성)

  • Sung, K.Y.;Yoon, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 1992
  • Acceleration signal characteristics of a steel plate, impacted by steel balls, were studied in an attempt to apply the experimental results to the impact location and mass estimation of metallic loose parts in the cooling system of nuclear power plants. Experimental results show that the variation of maximum acceleration amplitude and impact contact time due to the change of ball mass and impact velocity can be well explained by the Hertz impact theory. The frequency spectral pattern shifted slightly in spite of the increase of impact velocity and impact location. Ball mass, however, strongly affected the frequency spectral pattern. Hence the frequency spectrum can be used for estimation of the mass of unknown loose parts in the cooling system.

  • PDF

Impact Analysis Modeling Development for CANFLEX Fuel Bundle

  • H.Y. Kang;H.C. Suk;Lee, J.H.;Kim, T.H.;J.H. Ku;J.S. Jun;C.H. Chung;Park, J.H.;K.S. Sim
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.15-20
    • /
    • 1996
  • The nonlinear dynamic analyses were performed by newly developing an appropriate impact modelling for the evaluation of the CANFLEX fuel bundle structural integrity during the refuelling period. The initial load under the refuelling condition is considered as initial velocity at impact incident, and the impact of one bundle contacted another bundle for at short time is studied by performing several dynamic analysis method. The impact analysis shows to predict an appropriate velocity and acceleration profile according to load time history for two bundles impact.

  • PDF

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.