• Title/Summary/Keyword: Impact speed

Search Result 1,533, Processing Time 0.031 seconds

The Use of Bituminous Subballast on Future High-Speed Lines in Spain: Structural Design and Economical Impact

  • Teixeira, P.F.;Ferreira, P.A.;Pita, A. Lopez;Casas, C.;Bachiller, A.
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The development of structural solutions for high-speed or very high-speed tracks that minimize total life cycle costs of the system is a key issue to improve the operational profitability of new investments. In opposition to conventional ballasted tracks, slab track solutions can be a cost-effective solution, but only in the cases where the benefits due to the increase in track availability and the reduction of track maintenance offsets its much higher construction costs. In the cases where such investment is not feasible, it is worth to evaluate possible structural improvements to ballasted track that allow reducing its maintenance needs without increasing too much its construction costs. This paper evaluates the design requirements and the impact of improving conventional high-speed ballasted tracks by using a bituminous subballast layer. It is divided into two main parts: first the design requirements of the structural solutions with bituminous subballast and its possible benefits on high-speed track deterioration, and secondly the evaluation of the economic impact, in terms of construction costs, of using this structural solution material in future Spanish high-speed lines.

  • PDF

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Design and Development of Electromagnetic Launcher for Low-High Velocity Impact Test (중고속 충돌 실험을 위한 전자기력 발사장치의 설계와 제작)

  • Kim, Hong Kyo;Noh, Hak Gon;Kang, Beom Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.857-864
    • /
    • 2016
  • Many plane, UAV and drone fly in the sky as development of aviation industry. Plane and UAV fly and drone's propellers rotate so fast. Impact between flying objects which have high velocity threats passengers. Also the impact damages people, building and various property. Plane's operating speed is near sound velocity(340m/s), and propeller's rotating speed is less than that. Until now, impact experiment uses gas gun to get speed and the gun needs large space to entirely air expansion. Electromagnetic launcher, especially railgun, needs smaller space than gas gun to get enough speed about 500m/s. This paper explains electromagnetic launcher's operating principle, shows making electromagnetic launcher design guide line and suggests that it is a better apparatus to get low-high velocity.

The Vehicle Accident Reconstruction using Skid and Yaw Marks (스키드마크 및 요마크를 이용한 차량사고재구성)

  • 이승종;하정섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

Development of Evaluation Technique for Occupant Safety in KHST by Sled Test (Sled를 이용한 한국형 고속전철 승객안전도 평가 기술개발)

  • 윤영한;구정서
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.205-210
    • /
    • 2001
  • This paper uses a dynamic sled test approach to understand the effects of impact speed on the risk of occupant in KHST. The sled impact tests simulate a predefined accident scenarios. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

  • PDF

A Design of Impact Control Device for High-speed Mounting of Micro-Chips (소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

A Study on the Relationship between Impact Speed and Throw Distance of Pedestrian by the difference of the frontal shape of SUV vehicles (SUV 차량의 전면 구조 형상에 따른 충돌 속도와 보행자 전도 거리의 상관관계에 관한 연구)

  • Kang, Dae-Min;Ahn, Seung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.105-111
    • /
    • 2007
  • The type of pedestrian accident can be characterized by vehicular frontal shape and the height of pedestrian. The trajectory of pedestrian after collision by passenger car is different from that by bus due to vehicular frontal shape. The frontal shape of SUV vehicles is dissimilar to passenger car and bus. So, the trajectory and throw distance of pedestrian by SUV vehicles is not the same of passenger car and bus. In this paper, a series of pedestrian kinetic simulation were conducted to inspect the difference in throw distance between SUV vehicle and passenger car and bus by PC-CRASH that is the program for kinetic analysis of articulated body. From the results, if the height of pedestrian is taller than 1.70m, there is no difference in throw distance between SUV vehicle and passenger car, but if the height of pedestrian is about 1.55m throw distance of SUV vehicle is about 4m longer than that of passenger car at each impact speed. The throw distance of pedestrian by Bus is shorter than that of passenger car and SUV at each impact speed.

  • PDF

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

Vehicle-induced aerodynamic loads on highway sound barriers part1: field experiment

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.435-449
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. A field experiment is carried out with respect to three important factors: vehicle type, vehicle speed and the vehicle-barrier separation distance. Based on the results, the time-history of pressures is given, showing identical characteristics in all cases. Therefore, the vehicle-induced aerodynamic loads acting on the highway sound barrier are summarized as the combination of "head impact" and "wake impact". The head impact appears to have potential features, while the wake impact is influenced by the rotational flow. Then parameters in the experiment are analyzed, showing that the head impact varies with vehicle speed, vehicle-barrier separation distance, vehicle shape and cross-sectional area, while the wake impact is mainly about vehicle-barrier separation distance and vehicle length.