• 제목/요약/키워드: Impact pulse

검색결과 181건 처리시간 0.025초

병원의 급성심근경색증 진료 결과 공개의 효과 (Impact of public releasing of hospitals' performance on acute myocardial infarction outcomes)

  • 은상준;김윤;이은정;장원모
    • 한국의료질향상학회지
    • /
    • 제17권1호
    • /
    • pp.69-78
    • /
    • 2011
  • Objectives : The purpose of this study was to determine whether the published AMI report card could reduce in-patient mortality, 7-day after discharge mortality, and length of stay (LOS). Methods : Interrupted time-series intervention analysis was used to evaluate the impact of the report card for AMI care quality in November 2005 in terms of risk-adjusted in-patient mortality, risk-adjusted 7-day after discharge mortality, and DRGs case-mix LOS using the claim data of Health Insurance Review and Assessment Service. Results : Public disclosure of AMI care quality decreased risk-adjusted in-patient mortality and DRGs case-mix LOS by 0.00050% per month and 0.042 days per month respectively, however there was no effect on risk-adjusted 7-day after discharge mortality. Patterns of effect of public disclosure on AMI outcomes were a fluctuating pattern on risk-adjusted mortalities and a pulse impact for 1 month on DRGs case-mix LOS. Conclusions : We found the public disclosure of AMI care quality had decreasing effects on risk-adjusted in-patient mortality and DRGs case-mix LOS, but the size of the effect was marginal.

  • PDF

Design and Performance Evaluation of a 3-DOF Mobile Microrobot for Micromanipulation

  • Park, Jungyul;Kim, Deok-Ho;Kim, Byungkyu;Kim, Taesung;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1268-1275
    • /
    • 2003
  • In this paper, a compact 3-DOF mobile microrobot with sub-micron resolution is presented. It has many outstanding features : it is as small as a coin ; its precision is of sub-micrometer resolution on the plane ; it has an unlimited travel range ; and it has simple and compact mechanisms and structures which can be realized at low cost. With the impact actuating mechanism, this system enable both fast coarse motion and highly precise fine motion with a pulse wave input voltage controlled. The 1 -DOF impact actuating mechanism is modeled by taking into consideration the friction between the piezoelectric actuator and base. This modeling technique is extended to simulate the motion of the 3-DOF mobile robot. In addition, experiments are conducted to verify that the simulations accurately represent the real system. The modeling and simulation results will be used to design the model-based controller for the target system. The developed system can be used as a robotic positioning device in the micromanipulation system that determines the position of micro-sized components or particles in a small space, or assemble them in the meso-scale structure.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

임펄스 라디오 시스템에서 RF 대역 통과 필터의 군지연 영향 분석 (Impact of Group Delay in RF BPF on Impulse Radio Systems)

  • 명성식;권봉수;김영환;육종관
    • 한국전자파학회논문지
    • /
    • 제16권4호
    • /
    • pp.380-388
    • /
    • 2005
  • 본 논문은 초광대역 통신 방식(Ultra Wide Band, UWB)의 하나인 임펄스 라디오 시스템에서 RF(Radio Frequency)필터의 군지연 차에 의한 펄스 신호의 왜곡과 펄스 신호 왜곡으로 인한 시스템 성능의 열화에 대해 분석하였다. 임펄스 라디오는 시간 영역에서 매우 짧은 지속 시간을 갖는 펄스 신호를 변조하여 송신한 후 수신단에서 송신 펄스와 동일한 펄스를 발생하여 상호 상관(cross correlation)을 구해 신호를 판별하게 된다. 이로 인해 군지연 차이로 인한 펄스 파형의 왜곡은 심각한 시스템 성능 열화를 야기할 수 있다. 특히 RF 필터는 공진을 이용한 특성으로 인해, 필터의 차단 특성이 우수할수록 더 큰 군지연 차이를 야기하며, 본 논문에서는 이러한 RF필터의 군지연 차이가 시간 영역에서 펄스 파형의 왜곡에 미치는 영향 및 시스템 성능 열화에 미치는 영향을 분석하였다. 본 논문은 2 단자 회로의 입출력 단이 이상적으로 매칭되어 있을 경우 소신호 산란계수 $S_{21}$이 필터의 전달 함수 $H(\omega)$ 임을 이용하여 임의의 필터를 설계 후 그 $S_{21}$을 구하고, 역 푸리에 변환을 구하여 입력 펄스 파형과 컨벌루션 적분을 통해 출력 파형을 구하였다. 또한 BPM(Bi-Phase Modulation) 및 PPM(Pulse Position Modulation) 변조 임펄스 라디오 시스템의 BER(Bit Error Rate)을 분석하여 RF 필터의 군지연 차이로 인한 시스템 성능의 열화를 분석하였다.

응력파기반 비파괴검사법을 이용한 황토콘크리트 품질관리 플랫폼 (Quality Management Platform of Ocher Concrete Using Nondestructive Tests Based on the Stress Waves)

  • 홍성욱;김승훈;김성엽
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권6호
    • /
    • pp.120-127
    • /
    • 2016
  • 최근 새집증후군에 대한 문제점으로 인하여 호흡기 및 피부질환 등 여러 문제점들이 발생하고 있음에 따라 친환경 건축재료 또한 함께 대두되고 있다. 그 중 황토콘크리트는 구조재, 바닥재, 마감재 등 여러 부분에 많이 사용되고 있지만, 유지관리 및 안정성의 확보가 중요한 과제로 떠오르고 있음에도 황토콘크리트의 품질관리에 관한 적용성 평가가 미비한 상태이다. 본 연구에서는 응력파기반 비파괴검사법 중 하나인 충격반향기법과 초음파속도법을 이용하여 황토콘크리트의 압축강도 추정 및 포장두께 추정 검증을 통한 품질관리기술을 제시하고 자바스크립트를 이용하여 사용자 중심의 품질관리가 가능한 플랫폼을 구현하고자 실험을 실시하였다. 그 결과 황토콘크리트의 압축강도와 초음파속도의 상관관계를 분석하여 압축강도 추정식을 제안하였으며, 충격반향기법을 이용하여 황토콘크리트 실험체의 실측두께와 추정두께의 오차율 분석을 통하여 포장두께 추정 적용성을 확인하였다. 또한 취득한 데이터를 바탕으로 자바스크립트와 연계해서 사용자 중심의 황토콘크리트 품질관리 시스템 플랫폼을 구현하여, 플랫폼으로 사용자중심의 데이터를 취득할 수 있는 가능성을 확인하였다.

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석 (Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact)

  • 홍성우;박원필;박성지;유재호;공세진;김한성
    • 자동차안전학회지
    • /
    • 제4권2호
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Behavior of dry medium and loose sand-foundation system acted upon by impact loads

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.703-721
    • /
    • 2017
  • The experimental study of the behavior of dry medium and loose sandy soil under the action of a single impulsive load is carried out. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depth ratios within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil and then recorded using the multi-recorder TMR-200. The behavior of medium and loose sandy soil was evaluated with different parameters, these are; footing embedment, depth ratios (D/B), diameter of the impact plate (B), and the applied energy. It was found that increasing footing embedment depth results in: amplitude of the force-time history increases by about 10-30%. due to increase in the degree of confinement with the increasing in the embedment, the displacement response of the soil will decrease by about 25-35% for loose sand, 35-40% for medium sand due to increase in the overburden pressure when the embedment depth increased. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency, moreover, soil density increases with depth because of compaction, that is, tendency to behave as a solid medium.

변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석 (Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;신보성
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

중풍 환자의 기능 회복에 관한 임상적 고찰 (A Clinical Study on the Functional Outcome in Stroke)

  • 권정남;김영균;조은희
    • 대한한방내과학회지
    • /
    • 제22권4호
    • /
    • pp.647-657
    • /
    • 2001
  • In the oriental medicine field, researches have been in progress regarding oriental medical factors. I also carried out a clinical study on stroke, from which I discovered meaningful results about important factors that impact on the prognosis of stroke. We studied 132 patients after diagnosis of stroke through a Brain-CT scan and MRI sea, to the oriental internal medicine department at the Hospital affiliated to Oriental Medical College, Dongeui University. All the patients showed meaningful improvement in the examination of their symptoms after four weeks, compared with the first week. Between strokes involving meridian system and strokes involving internal organs, the symptom of paralysis caused by strokes involving meridian system, which patients were in favorable initial condition, had improved significantly and that by strokes involving internal organs had not. The group whose initial bowel movement since the stroke was delayed, whose coating on the tongue was thick or the tongue was dry, whose pulse was tachycardiac, or who had a history of hypertension or diabetics showed a significantly worse symptom after 4 weeks than that of groups in the opposite cases.

  • PDF