• 제목/요약/키워드: Impact protection performance

검색결과 156건 처리시간 0.027초

낙상충격 보호패드의 개발 및 평가 (Development and Evaluation of Fall Impact Protection Pad)

  • 박정현;이진숙;이정란
    • 한국의류산업학회지
    • /
    • 제20권4호
    • /
    • pp.422-428
    • /
    • 2018
  • In this study, we developed honeycomb pads using foam and polymer gel and verified the impact protection performance of pads for the development of a fall protection pants for elderly women aged 65 and over who have a high risk of fracture due to falls. The results are as follows; In the first experiment, the impact protection performance was evaluated for four honeycomb pad samples (CR foam, EPDM foam, hardness 15 polymer gel, and hardness 30 polymer gel) manufactured to a thickness of 5 mm using a single material. When the force of about 10757N was applied to the specimens, all four pads reduced the impact force to 3100N or less. Polymer gels showed better protection than foam materials. In the second experiment, the thickness of the protective pad was set to 8 mm in order to improve the shock absorbing performance of the protective pad. As a result of evaluating the impact protection performance of the foam single pad and foam gel composite pad, the impact absorbing performance of the foam single pad was better. Finally, four kinds of protection pads were made by assigning the foam single pad and the foam gel composite pad to pants type and underwear type respectively. The pad thickness of the main protection area was set to 8 mm to enhance the protection, and gradually decreased to 5mm and 3mm toward the edge to improve the appearance and fit.

3D 프린팅 기술을 활용한 낙상충격 보호패드 설계 및 구조에 따른 특성비교 (Design of Fall Impact Protection Pads Using 3D Printing Technology and Comparison of Characteristics according to Structure)

  • 박정현;정희경;이정란
    • 한국의류학회지
    • /
    • 제42권4호
    • /
    • pp.612-625
    • /
    • 2018
  • This study designed 16 kinds of basic structure and 4 kinds of modified structure for impact protection pads with a spacer fabric shape. The pad is a structure in which hexagonal three-dimensional units, composed of a surface layer and a spacer layer, are interconnected. Designed pads were printed with flexible $NinjaFlex^{(R)}$ materials using a FDM 3D printer. The printed pads were evaluated for impact protection performance, compression properties and sensory properties. The evaluation of the impact protection performance indicated that basic structures better than CR foam material at 20cm height were DV1.5, DX1.5, DX1.0, DV1.0 and HV1.5. The evaluation of the compression properties for the five types, with good results in the impact protection performance, indicated that DV1.0, DX1.0, DV1.5, HV1.5 and DX1.5 showed good results, respectively. The sensory evaluation of DV1.0, DX1.0, and DV1.5, which with good results when considering both the impact protection performance and the compression performance, showed that DV1.0 were the best for surface, flexibility, compression and weight. Therefore, DV1.0 is shown to be the best structure for protection pads.

충격흡수시설의 탑승자보호 성능평가 기준에 관한 연구 (A Study on the Injury Criteria of the Occupant Protection Performance of Crush Cushions)

  • 임재문;정근섭
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.49-57
    • /
    • 2008
  • The performance of crash cushion systems is certified through the full scale crash tests by the standard for installation and maintenance guidelines for roadside safety appurtenance. The impact severities of impacting vehicles in collision with crash cushion systems are rated by indices THIV and PHD. Crash test results are considered to study the performance of three crash cushion systems. In case of the frontal impact or the offset frontal impact, the results show that THIV values of three systems are very close to the threshold limit for the occupant protection. Also, the results show that PHD would be improper for the occupant protection performance index. In order to improve the occupant protection performance of crash cushions, ASI needs to be included in the impact severity index.

3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교 (Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material)

  • 박정현;정희경;이정란
    • 한국의류학회지
    • /
    • 제41권5호
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns

  • Li, Jie;Wang, Weiqiang;Wu, Chengqing;Liu, Zhongxian;Wu, Pengtao
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.325-351
    • /
    • 2022
  • This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.

동작 가변적 3D 프린팅 충격보호패드의 설계 (Design of motion-adaptable 3D printed impact protection pad)

  • 박정현;이진숙;이정란
    • 복식문화연구
    • /
    • 제30권3호
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

고속 비상체 충격에 의한 시멘트 복합체의 파괴거동 평가 (Evaluation of Fracture Behaviours of Cementitious Composites by High-velocity Projectile Impact)

  • 민지영;조현우;이장화;김성욱;문재흠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.55-62
    • /
    • 2015
  • 공공시설물의 대형화 및 도심지로의 인구 밀집화에 따라 충돌 또는 폭발과 같은 하중조건 하에서의 구조물 방호성능의 중요성이 대두되고 있다. 그러나 구조물의 방호설계 및 시공에 있어서 필수적이라 할 수 있는 구조 재료 또는 자재에 대한 방호성능 평가기준은 현재 정립되어 있지 않은 실정이다. 따라서 본 연구에서는 구조용 자재의 내충격 성능평가 기준 개발 연구의 일환으로 가스건을 사용한 발사체 충격 파괴시험을 콘크리트 시험체에서 수행함과 동시에, 다양한 접촉식 계측 센서의 적용 가능성을 확인하고자 하였다. 또한, 충격 파괴시험을 통해 일반 콘크리트 및 강섬유가 보강된 초고성능콘크리트의 파괴모드 및 방호성능에 대한 평가를 수행하였다. 실험 수행 결과, 접촉식 계측센서 중 LVDT 변위계의 적용 가능성을 확인하였으며, UHPC의 경우 혼입된 보강섬유의 효과로 인해 일반 콘크리트에 비해 우수한 방호성능을 보여주었다.

Performance of Protection Systems during Catastrophic failures in Power Systems

  • Phadke Arun G.
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.103-108
    • /
    • 2005
  • Catastrophic failures in power systems are rare but not uncommon events. Protection systems play an important role in the progression of events during a catastrophic failure. This paper will examine some of the historical records, and suggest possible improvements to protection systems which can have a positive impact on power system performance during catastrophic failures.

여성 노인을 위한 낙상충격 보호팬츠 개발 및 평가 (Development and Evaluation of Fall Impact Protective Clothing for the Elderly Women)

  • 박정현;이진숙;이정란
    • 한국의류산업학회지
    • /
    • 제20권5호
    • /
    • pp.569-582
    • /
    • 2018
  • The purpose of this study is to verify the impact protection performance and to evaluate the activity, design, fit, and pad characteristics of the fall impact protection clothing for elderly women. The protective clothing was designed as pants type and underwear type, and an impact protection pad in the form of a tightly connected regular hexagon piece was inserted in the hip and hip joints. The pad was made of two kinds of foam single pad and foam and gel combination pad so that they could be inserted into pants type and underwear type, respectively. The results of the shock absorption performance of the fall impact protective clothing showed that when the impact force of 4601N was applied to the pants type protective clothing, the impact force was reduced by 29% in the foam pad type and 26% in the gel and foam pad type. When the force of 5113N was applied to the underwear type, it decreased by 40% in the foam pad type and by 34% in the gel and foam pad type. As a result of wearing evaluation of subject group, it was found that fit and activity of underwear type was better than that of pants type. Foam pad type was evaluated to be lighter than gel and foam pad type in both the subject and the expert group and the gel and foam pad was evaluated to be more flexible in the expert group.

여군 전투복 내 관절 부위 보호 패드 개발을 위한 설계 변인 조합에 따른 물성 평가 (Evaluation of Physical Properties of Material Combination for Fabricating Protection Pads for Women's Army Combat Uniforms )

  • 이옥경;이희란;김소영;이예진
    • 한국의류학회지
    • /
    • 제47권2호
    • /
    • pp.311-322
    • /
    • 2023
  • In this study, the properties of various material combinations were evaluated and an ideal material for fabricating protection pads for women's army combat uniforms was determined. Eight specimens were used for the evaluation: two types of materials, namely thermoplastic polyurethane for 3D printing, T and ethylene-vinyl acetate, E; two infill densities, namely 10%, 10 and 30%, 30; two types of pad designs, i.e., without holes, A and with holes, B; 2×2×2=8 and control E. The tensile strength, flexural strength, impact absorption, and weight of these specimens were evaluated. Results revealed that E was the most flexible material; however, its tensile strength and impact absorption were very low. Protection pads made from T (T-10A, T-10B, T-30A, and T-30B) had excellent tensile strength and impact absorption; however, they had low performance in ease of movement. Alternatively, protection pad with holes and an infill density of 30% produced using a combination of T and E had a high initial tensile modulus and exhibited excellent impact absorption. Moreover, it was flexible and light, which satisfies the standards and conditions required by protection pads. However, if T-E-10A and T-E-30B exhibited low impact absorption, as required, they can be regarded as appropriate materials for protection pads.