• Title/Summary/Keyword: Impact piston

Search Result 54, Processing Time 0.023 seconds

Modeling and Analysis of a Hydraulic Breaker Considering Elastic Impact between the Piston and the Chisel (유압브레커의 모델링 및 피스톤과 치즐간의 탄성충돌을 고려한 해석)

  • 고승환;임종혁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.338-347
    • /
    • 1995
  • Equations of motion and continuity equations of a hydraulic breaker are derived. Hydraulic pressures are defined with 6 state variables corresponding to 6 control volumes. Impact analysis procedure of the piston and chisel is developed based on the finite element nodal displacement description. Computer simulation is performed with given design parameters and the results are compared with experimental results.

Finite Element Analysis of Piston Slap Phenomenon in Reciprocating Compressors Considering Coolant Circulation (냉매순환을 고려한 왕복동형 압축기의 피스톤 슬랩현상에 대한 유한요소 해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Kim, Hyun-Ok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1087-1094
    • /
    • 2003
  • The piston slap phenomenon occurs when the piston collides with the internal wall of the cylinder. Impact force caused by piston slap is one of the major mechanical noise sources in reciprocating compressors. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, forces acting on piston by considering the dynamic behavior of suction and discharge valves are analytically calculated and the piston slap caused by the piston secondary motion is investigated by the finite element method.

Analysis and Prediction of Piston-Slap Induced Vibration (피스톤슬랩에 의한 엔진 진동현상의 분석과 예측)

  • 권기웅;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3045-3054
    • /
    • 1993
  • The mechanics related with piston-slap induced vibration has been studied in terms of non-dimensionalized dynamic equation of motion, various non-dimensional parameters such as non-dimensional side-thrust force and non-dimensional impact velocity throughout the numerical simulation. Experimental verification on the suggested prediction method has been also performed by using single cylinder engine which was carefully designed and manufactured to wisely control the engine parameters, especially clearance and the mass of piston. The predicted and experimentally observed vibration signature confirm that the proposed method is practically useful.

Analysis of Dynamic Characteristics of a Piston for a Linear Compressor Considering Changes in Groove Geometry (리니어 압축기에서 그루브 형상 변화에 따른피스톤의 동특성 해석)

  • Noh, Sangwan;Oh, Wonsik;Park, Kyeongbae;Rhim, Yoonchul
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.221-228
    • /
    • 2015
  • It is possible to prevent a piston from contacting the cylinder by changing the shape of the piston or by applying micro-textures, such as micro-grooves or micro-holes, over the piston surface. Usually, the minimum radial clearance reaches its minimum value at the beginning of the suction stroke because the pressure around the piston is low and almost axisymmetric such that the net pressure force on the piston is not sufficiently high to support the piston from touching the cylinder. In this study, we apply a series of saw-tooth-shaped grooves on the piston surface, and numerically investigate the effects of groove depth, groove angle, and the number of grooves with radial clearance variations using a finite difference method. We conduct a dynamic analysis of the piston for various changes in groove geometries to obtain the minimum radial clearance variation for the entire compression cycle. The minimum radial clearance increases while friction loss decreases when we apply the series of saw-tooth-shaped grooves on the piston. In addition, we analyze the impact of the change in the groove shape variable due to changes in radial clearance. Leakage variations are relevant to radial clearance, but have almost no effect on the groove parameters.

Effect of Orifices in Cushion Sleeve on Cushion Characteristic of Pneumatic Cylinder (쿠션슬리브의 오리피스가 공압실린더의 쿠션특성에 미치는 영향)

  • 박재범;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-80
    • /
    • 2004
  • Cushion sleeves are used in pneumatic cylinders to avoid impact force arising at the end stroke part between moving piston and cylinder cover. In this study low kinds of cushion sleeves are designed, manufactured and attached to the pneumatic cylinder to be experimented. The effects of cushion sleeves on cushion characteristics are investigated. e results are as follows; the pressure variation of cushion room with orifices are inspected to be smaller than that of cushion room without orifices. So sleeves with orifices are expected as protecting from impact and vibration of pneumatic cylinder. The object of this study is to provide data on the charactristics of pneumatic cushion sleeve in case of being used in industry.

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method (유한요소법을 이용한 유기압 현수장치의 열전달 해석)

  • Bae, Jing-Do;Cho, Jin-Rae;Lee, Hong-Woo;Song, Jung-In;Lee, Jin-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions (마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

Optimum Design of Impact Absorbing System for Spreader by Vibration Analysis (진동해석에 의해 스프레더용 충격흡수기의 최적설계)

  • 홍도관;김동영;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.689-693
    • /
    • 1997
  • This paper deals wth the impact and the transient analysis of the impact absorbing system consist of double damping. piston and sprlng system in spreader to increaas efficlcncy of it. It shows the optimum damping coefficient and spring constant under the limited stroku of Impact absorbing system using for crane spreader and the optimum condition of impact absorbing system causing certain reaction force as time. which is characteristic of dashpot and rubber. This system absorbed 11.5 and 88.5 % impact energq at the spring and the damper respectively.

  • PDF

An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment (보수용접봉의 종류와 용접후 열처리가 용접금속부의 내식성에 미치는 영향에 관한 전기화학적 평가)

  • Shin, Jae-Hyun;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.310-316
    • /
    • 2010
  • Recently a fuel oil of the diesel engine of the marine ship is being changed with heavy oil of low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine such as cylinder liner, piston crown, spindle and seat ring of exhaust valves are predominantly increased. In particular the degree of wear and corrosion of piston crown is more seriously compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weldment of the piston crown is a unique method to prolong the its life in a economical point of view. In this case, filler metals having a high corrosion and wear resistance such as stellite 6, Inconel 625 and Inconel 718 are mainly being used for repair welding. However it has been often happened that piston crown on the ship,s job site is being actually inevitably welded with mild filler metals. Therefore in this study, filler metals such as E4301, E4313 and E4316 were welded at SS401 steel as the base metal, and corrosion property of their weld metals in the case of post weld heat treatment or not was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 0.1% $H_2SO_4$ solution. Corrosion resistance of the weld metal of E4301 was better than the other weld metals in the case of no heat treatment, however, its resistance was considerably decreased with post weld heat treatment(annealing:$625^{\circ}C$, 2 hr) compared to other weld metals. The weld metals of E4313 and E4316 showed a relatively good corrosion resistance by post weld heat treatment.