Journal of the Korea Organic Resources Recycling Association
/
v.18
no.3
/
pp.77-86
/
2010
In this study, the model of the indirect wind suction waste sorting machine for characteristics of the screening of waste was studied using computational fluid dynamics and the drag coefficient for the model and the suction wind speed were obtained. The wind separator are developing by installing a cyclone air outlet to the suction blower impeller waste is selective in a way that does not pass the features and characteristics of the inlet pipe of the pressure loss and separation efficiency can have a significant impact on. Using Wind separator for selection of waste in the waste prior research on the aerodynamic properties are essential. For plastic cases, it is reasonable to take the drag coefficient between 0.8 and 1.0, and for cans, compression depending on whether the cans, the drag coefficient is in the range from 0.2 to 0.7. The separation efficiency of waste as change suction speed was the highest efficiency when the suction speed was 25~26 m/s. Shape of the inlet, depending on how the transfer pipe of the duct pressure loss occurs because the inlet velocity changes through the appropriate design standards to allow for continued research is needed.
Text data is usually made up of a wide variety of unique words. Even in standard text data, it is common to find tens of thousands of different words. In text data analysis, usually, each unique word is treated as a variable. Thus, text data can be regarded as a dataset with a large number of variables. On the other hand, in text data classification, we often encounter class label imbalance problems. In the cases of substantial imbalances, the performance of conventional classification models can be severely degraded. To improve the classification performance of support vector machines (SVM) for imbalanced data, algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) can be used. The SMOTE algorithm synthetically generates new observations for the minority class based on the k-Nearest Neighbors (kNN) algorithm. However, in datasets with a large number of variables, such as text data, errors may accumulate. This can potentially impact the performance of the kNN algorithm. In this study, we propose a method for enhancing prediction performance for the minority class of imbalanced text data. Our approach involves employing variable selection to generate new synthetic observations in a reduced space, thereby improving the overall classification performance of SVM.
Due to the rapid development of IT in recent years, not only personal information but also the key technologies and information leakage that companies have are becoming important issues. For the enterprise, the core technology that the company possesses is a very important part for the survival of the enterprise and for the continuous competitive advantage. Recently, there have been many cases of technical infringement. Technology leaks not only cause tremendous financial losses such as falling stock prices for companies, but they also have a negative impact on corporate reputation and delays in corporate development. In the case of SMEs, where core technology is an important part of the enterprise, compared to large corporations, the preparation for technological leakage can be seen as an indispensable factor in the existence of the enterprise. As the necessity and importance of Information Security Management (ISM) is emerging, it is necessary to check and prepare for the threat of technology infringement early in the enterprise. Nevertheless, previous studies have shown that the majority of policy alternatives are represented by about 90%. As a research method, literature analysis accounted for 76% and empirical and statistical analysis accounted for a relatively low rate of 16%. For this reason, it is necessary to study the management model and prediction model to prevent leakage of technology to meet the characteristics of SMEs. In this study, before analyzing the empirical analysis, we divided the technical characteristics from the technology value perspective and the organizational factor from the technology control point based on many previous researches related to the factors affecting the technology leakage. A total of 12 related variables were selected for the two factors, and the analysis was performed with these variables. In this study, we use three - year data of "Small and Medium Enterprise Technical Statistics Survey" conducted by the Small and Medium Business Administration. Analysis data includes 30 industries based on KSIC-based 2-digit classification, and the number of companies affected by technology leakage is 415 over 3 years. Through this data, we conducted a randomized sampling in the same industry based on the KSIC in the same year, and compared with the companies (n = 415) and the unaffected firms (n = 415) 1:1 Corresponding samples were prepared and analyzed. In this research, we will conduct an empirical analysis to search for factors influencing technology leakage, and propose an early warning system through data mining. Specifically, in this study, based on the questionnaire survey of SMEs conducted by the Small and Medium Business Administration (SME), we classified the factors that affect the technology leakage of SMEs into two factors(Technology Characteristics, Organization Characteristics). And we propose a model that informs the possibility of technical infringement by using Support Vector Machine(SVM) which is one of the various techniques of data mining based on the proven factors through statistical analysis. Unlike previous studies, this study focused on the cases of various industries in many years, and it can be pointed out that the artificial intelligence model was developed through this study. In addition, since the factors are derived empirically according to the actual leakage of SME technology leakage, it will be possible to suggest to policy makers which companies should be managed from the viewpoint of technology protection. Finally, it is expected that the early warning model on the possibility of technology leakage proposed in this study will provide an opportunity to prevent technology Leakage from the viewpoint of enterprise and government in advance.
The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.
Woo, So Young;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
Journal of Korea Water Resources Association
/
v.51
no.10
/
pp.863-874
/
2018
The purpose of this study is to evaluate the future climate change impact on stream aquatic ecology health of Han River watershed ($34,148km^2$) using SWAT (Soil and Water Assessment Tool) and random forest. The 8 years (2008~2015) spring (April to June) Aquatic ecology Health Indices (AHI) such as Trophic Diatom Index (TDI), Benthic Macroinvertebrate Index (BMI) and Fish Assessment Index (FAI) scored (0~100) and graded (A~E) by NIER (National Institute of Environmental Research) were used. The 8 years NIER indices with the water quality (T-N, $NH_4$, $NO_3$, T-P, $PO_4$) showed that the deviation of AHI score is large when the concentration of water quality is low, and AHI score had negative correlation when the concentration is high. By using random forest, one of the Machine Learning techniques for classification analysis, the classification results for the 3 indices grade showed that all of precision, recall, and f1-score were above 0.81. The future SWAT hydrology and water quality results under HadGEM3-RA RCP 4.5 and 8.5 scenarios of Korea Meteorological Administration (KMA) showed that the future nitrogen-related water quality in watershed average increased up to 43.2% by the baseflow increase effect and the phosphorus-related water quality decreased up to 18.9% by the surface runoff decrease effect. The future FAI and BMI showed a little better Index grade while the future TDI showed a little worse index grade. We can infer that the future TDI is more sensitive to nitrogen-related water quality and the future FAI and BMI are responded to phosphorus-related water quality.
An, Da-Hee;Cha, Young-Lok;Kim, Kwang-Soo;Shin, Woon-Chul;Lee, Ji-Eun
KOREAN JOURNAL OF CROP SCIENCE
/
v.66
no.3
/
pp.256-264
/
2021
Rapeseed (Brassica napus L.) is generally sown in late autumn and harvested in early summer in Korea, however, spring cultivation has also been attempted in some areas because frequent climate changes induce reducing productivity. Therefore, there is a need for a transplanting technology that is relatively easy to control of cropping season according to changes in cultivation conditions. In this study, to find out the optimal characteristics of seedlings for machine transplanting of spring cultivation, seedling morphological characteristics were investigated according to the seedling age of three varieties for 2020 and 2021. The hypocotyl length was less than 2 cm in both years and the 40-day-old seedling was the shortest among all seedling ages. The number and size of leaf were increased with longer seedling age in both years. To evaluate seedling quality, total seedling length, seedling weight, and impact resistance were measured before transplanting. Total seedling length was the longest in 40-day-old seedlings and the shortest in 25-day-old seedlings in both years. In the case of seedling weight, no significant differences were observed depending on the seedling age and the impact resistance increased with increasing seedling age. Finally, 'Jungmo7001', 'Naehan', and 'Tamla' showed a high transplanting rate in seedlings grown for more than 30 days, 35 days, and 40 days, respectively, in the field using a general transplanter. These results suggest that the proper seedling age for transplanting is limited depending on the rapeseed varieties. The suitable seedling cultivation method can be selected for different cultivation environments.
Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.
This study was conducted to assess effect of thiacloprid fogging on non-target insect communities in Korean white pine forests. In addition, we assessed effect of thiacloprid fogging on mortality of Monochamus saltuarius as a vector of pine wood nematodes, and Apis mellifera as a non-target species. We compared abundance, species richness, and compostion of insects, and mortality of two insects among four treatment groups (control and thiacloprid-fogged groups with 3 different doses) located in the Kangwon National University Forest. For sampling of insects, 6 pitfall and 2 multi-funnel traps and 3 waterproof cloth sheets were placed in each study plot. In addition, M. saltuarius and A. mellifera were put into each meshed cage which installed at 7 m and 15 m heights in center of each study plot. Thiacloprid was fogged only once (middle May) in each plot using a fogging machine. Overall, thiacloprid fogging was appeared to be low toxicity to the abundance, species richness, and compostion of insects and mortality of A. mellifera, while it seems effectively impact on the mortality of M. saltuarius. However, thiacloprid fogging seems more influenced by microclimates in forests because the mortality of M. saltuarius in mesh cages was different according to heights and spatial locations. To control the population density and dispersal of M. saltuarius using by fogging techniques, therefore, it may be necessary to minimize the uncertainty about the effectiveness of thiacloprid fogging by improving the fogging techniques.
Threshing operation may be one of the most important processes in the paddy post-production system as far as the grain loss and labor requirement are concerned . head-feeding type threshers commercially available now in Korea originally were developed for threshing dry paddy in the range of 15 to 17 % in wet basis. However, threshing wet-paddy with the grain moisture content above 20 % has been strongly recommended, especially for new high-yielding Indica -type varieties ; (1) to reduce high grain loss incurred due to the handling operations, and (2) to prevent the quantitative and qualitative loss of milled -rice when unthreshed grains are rewetted due to the rainfall. The objective of this study were to investigate the adaptability of both a head-feeding type thresher and a throw-in type thresher to wet-paddy , and to find out the possiblilities of improving the components of these threshers threshing. Four varieties, Suweon 264 and Milyang 24 as Tongil sister line varieties, minehikari and Jinhueng as Japonica-type varieties, were used at the different levels of the moisture content of grains. Both the feed rate and the cylinder speed were varied for each material and each machine. The thresher output quality , composition of tailing return, and separating loss were analyzed from the sampels taken at each treatment. A separate experiment for measurement opf the power requirement of the head-feeding type thresher was also performed. The results are summarized as follows : 1. There was a difference in the thresher output quality between rice varieties. In case of wet-paddy threshing at 550 rpm , grains with branchlet and torn heads for the Suweon 264 were 12 % and 7 % of the total output in weight, respectively, and for the Minehikari 4.5 % and 2 % respectively. In case of dry paddy threshing , those for the Suweon 264 were 8 % and 5% , and for the Minehikari 4% and 1% respectively. However, those for the Milyang 23 , which is highly susceptable to shattering, were much lower with 1 % and 0.5% respectively, regardless of the moisture content of the paddy. Therefore, it is desirable to breed rice varieties of the same physical properties as well as to improve a thresher adaptable to all the varieties. Torn heads, which increased with the moisture content of rall the varieties except the Milyang 23 , decreased as the cylinder speed increased, but grains with branchlet didnt decrease. The damaged kernels increased with the cylinder speed. 3. The thresher output quality was not affected much by the feed rate. But grains with branchlet and torn heads increased slightly with the feed rate for the head-feeding type thresher since higher resistance lowered at the cylinder speed. 4. In order to reduce grains with branchlet and torn heads in wet-paddy threshing , it is desirable to improve the head-feeding type thresher by developing a new type of cylinder which to not give excess impact on kernels or a concave which has differenct sizes of holes at different locations along the cylinder. 5. For the head-feeding type thresher, there was a difference in separating loss between the varieties. At the cylinder speed of 600 rpm the separating losses for the Minehikari and the Suweon 264 were 1.2% and 0.6% respectively. The separating loss of the head-feeding type thresher was not affected by the moisture content of paddy while that of the Mini-aged thresher increased with the moisture content. 6. From the analysis of the tailings return , to appeared that the tailings return mechanism didn't function properly because lots of single grains and rubbishes were unnecessarily returned. 7. Adding a vibrating sieve to the head-feeding type thresher could increase the efficiency of separation. Consequently , the tailing return mechanism would function properly since unnecessary return could be educed greatly. 8. The power required for the head-feeding type thresher was not affected by the moisture content of paddy, but the average power increased linearly with the feed rate. The power also increased with the cylinder speed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.