• Title/Summary/Keyword: Impact ionization

Search Result 120, Processing Time 0.028 seconds

Comparison between Source-induced Dissociation and Collision-induced Dissociation of Ampicillin, Chloramphenicol, Ciprofloxacin, and Oxytetracycline via Mass Spectrometry

  • Lee, Seung Ha;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Mass spectrometry (MS) is a very powerful instrument that can be used to analyze a wide range of materials such as proteins, peptides, DNA, drugs, and polymers. The process typically involves either chemical or electron (impact) ionization of the analyte. The resulting charged species or fragment is subsequently identified by the detector. Usually, single mass uses source-induced dissociation (SID), whereas mass/mass uses collision-induced dissociation (CID) to analyze the chemical fragmentations Each technique has its own advantages and disadvantages. While CID is most effective for the analysis of pure substances, multiple-step MS is a powerful technique to get structural data. Analysis of veterinary drugs ampicillin, chloramphenicol, ciprofloxacin, and oxytetracycline serves to highlight the slight differences between SID and CID. For example, minor differences were observed between ciprofloxacin and oxytetracycline via SID or CID. However, distinct fragmentation patterns were observed for ampicllin depending on the analysis method. Both SID and CID showed similar fragmentation spectra but different signal intensities for chloramphenicol. There are several factors that can influence the fragmentation spectra, such as the collision energy, major precursor ion, electrospray mode (positive or negative), and sample homogeneity. Therefore, one must select a fragmentation method on an empirical and case-by-case basis.

Charge Transport and Electroluminescence in Insulating Polymers (절연층 폴리머의 전하 전송 및 EL 특성)

  • Choi, Yong-Sung;Ahn, Seong-Soo;Kim, Byung-Chul;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.91-97
    • /
    • 2008
  • Polymers submitted to thermo/electrical stress suffer from ageing that can drastically affect their functional behaviour. Understanding the physico/chemical processes at play during ageing and defining transport regimes in which these mechanisms start to be critical is therefore a prime goal to prevent degradation and to develop new formulation or new materials with improved properties. It is thought that a way to define these critical regimes is to investigate under which conditions (in terms of stress parameters) light is generated in the material by electroluminescence (EL). This can happen through impact excitation/ionization involving hot carriers or upon bi-polar charge recombination (a definition that excludes light from partial discharges, which would sign an advanced stage in the degradation process). After a brief review of the EL phenomenology under DC, we introduce a numerical model of charge transport postulating a recombination controlled electroluminescence. The model output is critically evaluated with special emphasize on the comparison between simulated and experimental light emission. Finally, we comment some open questions and perspectives.

  • PDF

Analysts on the Sealing of Nano Structure MOSFET (나노 구조 MOSFET의 스켈링에 대한 특성 분석)

  • 장광균;정학기;이종인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.573-579
    • /
    • 2001
  • The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high -integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. As devices become smaller from submicron to nanometer, we have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane by TCAD(Technology Computer Aided Design) to develop optimum device structure. We analyzed and compared the EPI device characteristics such as impact ionization, electric field and I-V curve with those of lightly doped drain(LDD) MOSFET. Also, we presented that TCAD simulator is suitable for device simulation and the scaling theory is suitable at nano structure device.

  • PDF

The Current-Voltage Characteristics analysis of EPI MOSFET using TCAD (TCAD를 이용한 EPI MOSfET의 전류-전압 특성 분석)

  • 김재홍;장광균;심성택;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.490-493
    • /
    • 2000
  • The technology for characteristics analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high integrated device by computer simulation and to fabricate the device having such characteristics became one of very important subjects. As devices become smaller to submicron, we have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane by TCAD(Technology Computer Aided Design) to develop optimum device structure. We compared and analyzed the characteristics of such device structure, i.e., impact ionization, electric field and I-V characteristics curve with lightly-doped drain(LDD) MOSFET. Also, we presented that TCAD simulator is suitable for device simulation.

  • PDF

Analysis of temperature effects on DC parameters of AlGaAs/GaAs HBT (AlGaAs/GaAs HBT의 DC 파라미터에 미치는 온도영향의 해석)

  • 김득영;박재홍;송정근
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.39-46
    • /
    • 1996
  • In AlGaAs/GaAs HBT the temperature dependence of DC parameters was investigated over the temperature range between 95K and 580K. The temperature dependence of DC parameters depends on the relative contribution of each of the current components suc as emitter-injection-current, base-injection-current, bulk recombination current, interface recombination curretn, thermal generation ecurrent and avalanche current due to impact ionization within the collector space charge layer in a specific temperature. In this paper we investigated the temperature effects on DC parameters such as V$_{BE,ON}$ current gain, input and output characteristics, V$_{CE, OFF}$, R$_{E}$, R$_{C}$ and analyzed the origins, and extracted the qualitativ econditions for a stable HBTs against the temperature variation. Finally, in order to keep HBTs stable with respect to the variation of temperature, the valance-band-energy-discontinuity at emitter-base heterojunction should be large enough to enhance the effect of carrier suppression at a relatively high temperature. In addition the recombination centers, especially around collector junction, should be removed and the area of emitter and collector junction should be identical as well.

  • PDF

Membrane Inlet-based Portable Time-of-flight Mass Spectrometer for Analysis of Air Samples

  • Kim, Tae-Kyu;Jung, Kyung-Hoon;Yoo, Seung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.303-308
    • /
    • 2005
  • A miniaturized time-of-flight mass spectrometer with an electron impact ionization source and sheet membrane introduction has been developed. The advantages and features of this mass spectrometer include high sensitivity, simple structure, low cost, compact volume with field portability, and ease of operation. A mass resolution of 400 at m/z 78 has been obtained with a 25 cm flight path length. Under optimized conditions, the detection limits for the volatile organic compounds (VOCs) studied were 0.2-10 ppm by volume with linear dynamic ranges greater than three orders of magnitude. The response times for various VOCs using a silicone membrane of 127 $\mu$m thickness were in the range 4.5-20 s, which provides a sample analysis time of less than 1 minute. These results indicate that the membrane introduction/time-of-flight mass spectrometer will be useful for a wide range of field applications, particularly for environmental monitoring.

Simulation Study on the Breakdown Characteristics of InGaAs/InP Composite Channel MHEMTs with an InP-Etchstop Layer (InP 식각정지층을 갖는 MHEMT 소자의 InGaAs/InP 복합 채널 항복 특성 시뮬레이션)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.21-25
    • /
    • 2013
  • This paper is for enhancing the breakdown voltage of MHEMTs with an InP-etchstop layer. The fully removed recess structure in the drain side of MHEMT shows that the breakdown voltage enhances from 2 V to 4 V in the previous work. This is because the surface effect at the drain side decreases the channel current and the impact ionization in the channel at high drain voltage. In order to increase the breakdown voltage at the same asymmetric gate-recess structure, the InGaAs channel structure is replaced with the InGaAs/InP composite channel in the simulation. The simulation results with InGaAs/InP channel show that the breakdown voltage increases to 6V in the MHEMT as the current decreases. In this paper, the simulation results for the InGaAs/InP channel are shown and analyzed for the InGaAs/InP composite channel in the MHEMT.

A Fast and Sensitive Method for the Simultaneous Determination and Quantification of Six Anionic Surfactants in Surface Water using HILIC-ESI-MS Technique

  • Dash, Upendra N.;Paul, Saroj Kumar
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.78-81
    • /
    • 2012
  • The hydrophobic hydrocarbon chain and the polar sulfate group confer surfactant properties and enable them to be used as anionic surfactants. Anionic surfactants (AS) are known for their adverse impact on environment, particularly on aquatic ecosystem. In the present study a fast, sensitive and selective method for the determination and subsequent quantification of six anionic surfactants was developed using hydrophilic interactive liquid chromatography (HILIC) coupled to a electrospray ionization (ESI) mass spectrometer (MS), in the concentration range 15-20 ${\mu}g/L$. The capability of the method was established using regression analysis and ANOVA. The method performance was evaluated by analyzing real time surface water spiked with 1-dodecyl hydrogen sulfate at 15 ${\mu}g/L$. Combined efficiency of solid phase extraction and MS detection established recovery of 89% in presence of natural matrix. These results point out that HILIC coupled to multistage MS procedures can be a powerful technique for environmental applications concerning the screening of polar contaminants.

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

Impacts of Process and Design Parameters on the Electrical Characteristics of High-Voltage DMOSFETs (공정 및 설계 변수가 고전압 LDMOSFET의 전기적 특성에 미치는 영향)

  • 박훈수;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.911-915
    • /
    • 2004
  • In this study, the electrical characteristics of high-voltage LDMOSFET fabricated by the existing CMOS technology were investigated depending on its process and design parameter. In order to verify the experimental data, two-dimensional device simulation was carried out simultaneously. The off- state breakdown voltages of n-channel LDMOSFETs were increased nearly in proportional to the drift region length. For the case of decreasing n-well ion implant doses from $1.0\times{10}^{13}/cm^2$ to $1.0\times{10}^{12}/cm^2$, the off-state breakdown voltage was increased approximately two times. The on-resistance was also increased about 76 %. From 2-D simulation, the increase in the breakdown voltage was attributed to a reduction in the maximum electric field of LDMOS imolanted with low dose as well as to a shift toward n+ drain region. Moreover, the on- and off-state breakdown voltages were also linearly increased with increasing the channel to n-tub spacing due to the reduction of impact ionization at the drift region. The experimental and design data of these high-voltage LDMOS devices can widely applied to design smart power ICs with low-voltage CMOS control and high-voltage driving circuits on the same chip.