• Title/Summary/Keyword: Impact control

Search Result 3,532, Processing Time 0.035 seconds

An Effect Analysis of Rearfoot Movement and Impact force by Different Design of Running Shoes Hardness (런닝화의 경도 차이가 후족 제어 및 충격력에 미치는 영향 분석)

  • Lee Dong-Choon;Lee Woo-Chang
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.291-296
    • /
    • 2002
  • The midsole hardness of athletic footwear affects capability of absorbing impact shock and controls rearfoot movement during running and walking. The prior studies were focused on examining the proper hardness of footwear for rearfoot movement or to finding effective hardness for absorbing impact shock. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral. Increasing hardness of footwear midsole are effected to reduce maximum and intial pronation angle, but declined the ability of impact shock during heelstrike. For determination of effectiveness hardness of midsole, therefore, the study that makes a compromise between rearfoot movement and absorbing impact during footstrike must be performed. The purpose of this study is to examine quantitative values of rearfoot control and absorbing impact shock with different hardness of medial and lateral midsole on heel portion. The results are useful to define biomechanical hardness of midsole for developing running shoes. As variable for impact shock, accelerations onto shank and knee are measured during 4 running speeds (5, 7, 9, 11km/h). Also, maximum and $10\%$ pronation angle (Achilles tendon angle) were measured using high-speed camera.

  • PDF

Modelling the Impact of Pandemic Influenza (신종 인플루엔자 대유행의 확산과 영향 모델링)

  • Chun, Byung-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.4
    • /
    • pp.379-385
    • /
    • 2005
  • The impact of the next influenza pandemic is difficult to predict. It is dependent on how virulent the virus is, how rapidly it spreads from population to population, and the effectiveness of prevention and response efforts. Despite the uncertainty about the magnitude of the next pandemic, estimates of the health and economic impact remain important to aid public health policy decisions and guide pandemic planning for health and emergency sectors. Planning ahead in preparation for an influenza pandemic, with its potentially very high morbidity and mortality rates, is essential for hospital administrators and public health officials. The estimat ion of pandemic impact is based on the previous pandemics- we had experienced at least 3 pandemics in 20th century. But the epidemiologi cal characteristics - ie, start season, the impact of 1st wave, pathogenicity and virulence of the viruses and the primary victims of population were quite different from one another. I reviewed methodology for estimation and modelling of pandemic impact and described some nations's results using them in their national preparedness plans. And then I showed the estimates of pandemic influenza impact in Korea with FluSurge and FluAid. And, I described the results of pandemic modelling with parameters of 1918 pandemic for the shake of education and training of the first-line responder health officials to the epidemics. In preparing influenza pandemics, the simulation and modelling are the keys to reduce the uncertainty of the future and to make proper policies to manage and control the pandemics.

The Development of the Platform for the Simulations of the Vehicle Operational Control for PRT (소형궤도차량의 차량운행제어 모의시험을 위한 플랫폼 개발)

  • Lee, Jun-Ho;Jeong, Rac-Gyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1441-1444
    • /
    • 2009
  • In this paper a platform that makes it possible the simulations of the vehicle operational control for PRT (Personal Rapid Transit) is introduced. PRT system has very short headway and requires accurate speed control of the vehicles to avoid the impact between the vehicles. The proposed platform is composed of central control system, station control system, communication control system, AP for wireless communication, and monitoring system. Simple operational test scenarios are presented and the effectiveness of the proposed platform is shown using the test scenarios.

  • PDF

MIMO Ad Hoc Networks: Medium Access Control, Saturation Throughput, and Optimal Hop Distance

  • Hu, Ming;Zhang, Junshan
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.317-330
    • /
    • 2004
  • In this paper, we explore the utility of recently discovered multiple-antenna techniques (namely MIMO techniques) for medium access control (MAC) design and routing in mobile ad hoc networks. Specifically, we focus on ad hoc networks where the spatial diversity technique is used to combat fading and achieve robustness in the presence of user mobility. We first examine the impact of spatial diversity on the MAC design, and devise a MIMO MAC protocol accordingly. We then develop analytical methods to characterize the corresponding saturation throughput for MIMO multi-hop networks. Building on the throughout analysis, we study the impact of MIMO MAC on routing. We characterize the optimal hop distance that minimizes the end-to-end delay in a large network. For completeness, we also study MAC design using directional antennas for the case where the channel has a strong line of sight (LOS) component. Our results show that the spatial diversity technique and the directional antenna technique can enhance the performance of mobile ad hoc networks significantly.

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Experimental Approach to Hopping Pattern Generation for One-legged Robot (한다리 로봇의 뜀뛰기 패턴 생성에 관한 실험적 접근)

  • Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.837-844
    • /
    • 2012
  • We introduce a pattern generation method for a hopping one-legged robot and verify it experimentally. The pattern is derived from the liner and angular momentum of a COM (Center of Mass), which are pre-scheduled. Because of the relation between angular velocities of joints and momemtums of the COM, joint angle trajectories are easily obtained. In addition, the landing impact force is reduced by only adjusting the landing timing. In the experiment, the one-legged robot hops in place with 0.06 s of flying time, and makes continuous hopping. Based on our experimental results, the proposed method can be applied to hopping and running of biped humanoid robots.

Impact of Delayed Control Message in AODV Protocol

  • Miao, Haoran;Lee, Ye-Eun;Kim, Ki-Il
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.82-83
    • /
    • 2022
  • Ad-hoc On-demand Distance Vector (AODV), is one of well-designed routing protocols in mobile ad hoc networks. It supports the functionality of node mobility modules through multiple control messages to create and maintain paths for data transfer. Even though a number of studies have been conducted to achieve rapid discovery of paths across the network, but few have focused on impact of control messages. This paper proposes a method to adjust the transmission time of messages used in path recovery according to their individual characteristics. Simulation results show the improved performance of the proposed algorithm rather than traditional AODV routing protocol.

Technique Proposal of Auto-Sensing Hydraulic Breaker with Stepwise Impact Stroke Variable Mechanism (단계적 타격 스트로크 가변 메커니즘이 적용된 지능형 유압브레이커의 기술 제안)

  • Lee, Dae Hee;Noh, Dae Kyung;Lee, Dong Won;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.9-21
    • /
    • 2018
  • The aim of this study was to develop and test a model of an auto-sensing hydraulic breaker that can automatically change its 4-step impact mode according to the rock strength using SimulationX. The auto-sensing hydraulic breaker with a 4-step variable impact mode has the advantage of obtaining optimal impact energy and impact frequency under various rock conditions compared to an auto-sensing hydraulic breaker with a 2-step variable impact mode, which has already been developed overseas. Several steps were necessary to conduct this study. First, the operation principle of the auto-sensing hydraulic breaker with the 2-step variable impact mode was analyzed. Based on the findings, an analysis model of the auto-sensing hydraulic breaker with the 4-step variable impact mode was developed (and compared with the 2-step variable impact mode) Finally, an analysis of the results established that the stepwise variable of the impact mode was implemented according to the rock strength and the difference of each impact mode was confirmed. This study is expected to contribute to the development of auto-sensing hydraulic breakers that are superior to those developed by advanced companies in foreign countries.

A Study of the impacts of control types on Tie strength and Project Performance - focus on field project organization of construction industry

  • Lee, Won-Hee;Cho, Ho-Haeng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.103-108
    • /
    • 2021
  • In this paper, we an empirical study of the effects of control types on Tie strength and filed project performance of project participants in field project organization for Korean domestic construction industry. In the study, we try to tell what significant impact output control, process control and tie strength among field project participants have on field project performance and features unique to field project organization for Korean construction industry through empirical analysis. And the findings of the empirical analysis are that output control appeared to have significant impacts on tie strength among the participants and process control, and process control also appear to have significant impact on field project performance.

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.