• 제목/요약/키워드: Impact coefficient

검색결과 1,043건 처리시간 0.022초

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

슬래밍 충격 압력 계산을 위한 선수선저의 형상계수 추정에 관한 연구 (A Study on the Estimation of Hull Form Coefficient of Slamming Impact Pressure)

  • 정석권;홍봉기
    • 수산해양기술연구
    • /
    • 제22권2호
    • /
    • pp.53-59
    • /
    • 1986
  • On the slamming analysis of ship design the data for the impact pressure acted on the forward bottom of a ship are needed. Furthermore impact pressure is given by the function of both the hull form coefficient and relative velocity. In this papper. a simplified method to estimate hull form coefficient by perso;,al computer (p. c.) is studied. This numerical analysis was applied to the model of the Mariner type. and then the result by the p. c. was compared with that by IBM 7090 computer. Main results obtained are as follows: 1. The result by the developed p. c. method had fairly good agreement with that by conventional large computer (IBM 7090) within 2% error. 2. This developed method' by p. c. may be applied to the initial estimation of the K-value because of the close agreement between the ship lines by the results of p. c. and that of input.

  • PDF

다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델 (A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts)

  • 김태형;이형일
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

자동차 사고 재고성을 위한 충돌 해석 (Impact Analysis for Vehicle Accident Reconstruction)

  • 한인환
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.178-190
    • /
    • 1998
  • We have developed a planar impact model with a capability of reverse calculation to reconstruct various types of automobile collisions. This topic is the main part of what is referred to as accident reconstruction. The model uses the principle of impulse and momentum, and introduces a restitution coefficient and an impulse ratio at the impact center. Based on the car-to-car collision test results, we present how to estimate the restitution coefficient and the impulse ratio from some impact conditions. To validate the model and improve its reliability in accident analysis, the collision analysis has been performer with the estimated parameters. The analysis and experimental results agree well in the kinetic energy loss and the post-impact velocity.

  • PDF

신축이음부에서 충돌을 고려한 콘크리트 교량의 동적해석 (Dynamics Analysis of Concrete Bridges at Expansion Joints Considering Pounding)

  • 최석정;유문식;전찬기;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.176-187
    • /
    • 2001
  • Most bridges have expansion joints to accommodate thermal expansion and contraction without inducing large forces in the bridges. To evaluate the effects of earthquake-induced at expansion joints of concrete bridges, the first part of this paper deals with a collinear impact between concrete segments, which have the same cross section but different lengths. Especially, impact force, momentum, strain energy and kinetic energy are formulated in mathematically. These results are then used in the second part of this paper to simulate a realistic yet simple analysis of seismic pounding in concrete bridges. Analysis of seismic pounding in idealized concrete bridges is carried out by using a simple lumped-mass model and rationally determined values of the coefficient of restitution and the duration of impact.

  • PDF

원통형 대책구조물의 배치조건에 따른 토석류의 충격하중에 대한 실험적 연구 (Experimental Study on the Effect of Arrangement of Cylindrical Countermeasures on Debris Flow Impact Load)

  • 조흥석;김범준;윤찬영
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.135-148
    • /
    • 2020
  • 본 연구에서는 원통형 대책구조물의 배치조건에 따라 각각의 대책구조물에 작용하는 토석류의 충격하중을 확인하기 위해, 대책구조물이 설치가 가능한 소형수로에서 대책구조물의 종방향 배열 수를 변화시켜가면서 실내모형실험을 수행하였다. 이를 바탕으로 토석류의 충격하중에 따른 흐름특성을 확인하고, 속도 및 흐름깊이에 따른 프루드 수와 동적압력계수를 분석하였다. 실험결과, 모든 조건에서 두 번째 대책구조물에서 최대충격하중이 가장 컸으며, 기존의 연구와 비교하여 동적압력계수 산정방법을 제안하고 그 값을 비교 분석하였다.

충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델 (Wear Progress Model by Impact Fretting in Steam Generator Tube)

  • 이정근;박치용;김태룡;조선영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델 (Wear Progress Model by Impact Fretting in Steam Generator Tube)

  • 박치용;이정근;김태룡
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

흡음 석고보드 천장재에 의한 저주파 중량 바닥충격음의 저감 효과 (Effects of sound absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound)

  • 송한솔;류종관
    • 한국음향학회지
    • /
    • 제37권5호
    • /
    • pp.323-330
    • /
    • 2018
  • 본 연구에서는 흡음 석고보드 천장재에 의한 바닥충격음 저감 효과를 조사하기 위해 잔향실에서의 흡음률 측정과 바닥충격음 성능평가 시험동에서의 바닥충격음 성능평가를 실시하였다. 먼저, 흡음률 측정은 흡음 석고보드, 흡음석고보드+글라스울, 흡음 석고보드 이중 천장재(흡음 석고보드+글라스울+흡음 석고보드)를 대상으로 실시하였다. 측정결과, 흡음 석고보드의 경우 200 Hz과 630 Hz 대역에서 약 0.1~0.5의 흡음률을 나타냈으며, 글라스울을 추가하였을 때 전체 측정 주파수대역(50 Hz ~ 630 Hz)에서 흡음률이 상승하였다. 흡음 석고보드를 추가 설치하였을 때 250 Hz 대역까지 흡음률이 크게 상승하였으나, 315 Hz 이상 대역에서는 흡음률이 감소하였다. 상기 3개의 흡음석고보드 및 일반 석고보드 천장재와 맨슬래브(천장 무) 대상으로 바닥충격음 차단 실험동에서 바닥충격음 차단성능 측정을 실시하였다. 측정결과, 흡음석고보드+글래스울과 흡음석고 보드 이중 천장재의 일반 석고보드 대비 중량충격음의 저감량은 단일평가지수 기준으로 3 dB ~ 4 dB인 것으로 나타났다. 맨슬래브 대비 중량충격음의 저감은 주로 125 Hz ~ 500 Hz 대역에서 발생하였으며 250 Hz 대역에서 최대의 저감량을 나타냈다.

강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우) (A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence))

  • 정만용;김정호;김선규;나기대;양인영
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF