• Title/Summary/Keyword: Impact bar

Search Result 215, Processing Time 0.02 seconds

Quality Properties of Recycled Coarse Aggregate Manufactured by the Bar-Crusher (봉파쇄기로 제조한 재생 굵은골재의 품질특성)

  • Baek, Dae-Hyun;Han, Dong-Yeob;Yu, Myoung-Youl;Lee, Gun-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.509-512
    • /
    • 2006
  • In this study, the quality properties of recycled coarse aggregate, manufactured by the barcrusher, were compared to that of aggregate, manufactured by conservative systems. Test showed that recycled coarse aggregate, manufactured by the bar-crusher, had higher density and shape index, and exhibited lower absorption and abrasion ratios, compared with a con-crusher and an impact-crusher. This is due to the peeling-off effect of mortar, attached on recycled aggregate and the improved round shape of that.

  • PDF

Analysis of Head Impact Test of the Passenger Air-Bag Module Assembly by LS-DYNA Explicit Code (LS-DYNA를 이용한 자동차 승객용 에어백 모듈의 헤드 충격 해석)

  • Kim, Moon-Saeng;Lim, Dong-Wan;Lee, Joon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.88-94
    • /
    • 2006
  • In this study, the dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. The impact performance of vehicle air-bag is directly related to the design parameters of passenger air-bag module assembly, such as the tie bar bracket's width and thickness, respectively, However, the product's design of PAB module parameters are estimated through experimental trial and error according to the designer's experience, generally. Therefore, the dynamic analysis of head impact test of the passenger air-bag module assembly of automobile is needed to construct the analytical methodology At first, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. The better optimized impact performance characteristics is proposed by changing the tie bracket's width md thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost. The results reported herein will provide a better understanding of the vehicle dynamic characteristics against head impact.

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Study on Friction Welding of Torsion Bar Material(1) -Optimization of Friction Welding Technique- (토션 바재의 마찰용접에 관한 연구(I) -마찰용접기술의 최적화에 대하여-)

  • 오세규;이종두
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 1990
  • The friction welding has more technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtailment of production time, materials, cost reduction, etc., it has been widely used in production of various mechanical components which have complex shapes. So, this paper deals with optimizing the friction welding conditions and analyzing various mechanical properties of the friction welded joints of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) The quantitative relation between heating time($t_{1}$, sec) and total upset(U, mm)can be obtained. The empirical formula obtained is ; U = 3.29$t_{1}$ + 1.6 2) The tensile strength($\sigma_{t}$, kgf/$mm^{2}$) of friction welding joints as post weld heat treated(PWHT) depends upon heating time($t_{1}$, sec) quantitatively and the empirical formula obtained is ; $\sigma$= -5.1$t_{1}\;^{2}$+44.90$t_{1}$+45.2 3) It is certain that the optimum condition for friction welded joints of SUP9A steel bars of diameter 14.5mm is, considering on various properties such as tensile strength, torsional strength, impact energy and strain of the joints after PWTH ; n = 2000rpm, $P_{1}$=8kgf/$mm^{2}$, $P_{2}$=20kgf/$mm^{2}$, $t_{1}$=4sec, $t_{2}$=3sec 4) The tensile strength, torsional strength and hardness were increased with the increased with the increasing carbon equivalent, but toughness was decreased.

  • PDF

The Study of Curing Day Reduction by Step Curing of HTPB/AP Propellant (HTPB/AP계열의 고체 추진제의 Step 경화 방법을 통한 경화일(기간) 단축)

  • Kim, Kahee;Park, Jung-Ho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • In this paper, step-curing, which includes the change of curing temperature on the curing process, was applied to reduce curing day of HTPB/AP based propellant. This study targets the improvement of productivity of HTPB/AP based solid rocket motor. Comparison of mechanical properties of propellant resulted in the change of normal curing condition (60℃, 5 days) to step-curing condition (60℃, 1 day / 65℃, 3 days). Post-cure test was conducted to determine the impact on the shelf life of the solid rocket motor. The aging characteristics of propellants were analyzed by measuring mechanical properties and thermal expansion factor. To step-cured propellant, accelerated aging test was performed for 12 weeks, followed by tensile test. Sm(bar) and Em(%) were higher than 8 bar and 40% each, showing excellent mechanical properties.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

Effects of Pre- and Post-workout Energy Bar Supplementation on Blood Lactate and Fitness in Young Adults with CrossFit Training: A randomized crossover study

  • Byung-Gul Lim;Xinxing Li;Wook Song
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.61-71
    • /
    • 2023
  • Purpose : Energy bars are increasingly popular among active individuals, yet their timing and nutrient combinations' impact on exercise adaptation remains unclear. This study aims to address this knowledge gap by investigating whether the combination of pre- and post-workout supplementation can synergistically enhance fitness and alleviate fatigue in trained CrossFit participants. Investigate if combining pre- and post-workout supplements can enhance fitness and blood lactate management in trained CrossFit participants, potentially improving exercise performance for this group. Methods : In a randomized crossover study, 20 trained CrossFit individuals (11 males, 9 females) completed thrice-weekly 60-minute CrossFit sessions for 3 weeks, with a one-week washout period. Participants were randomly assigned to either a chocolate bar group (CH, 45 g, 225 kcal) or an energy bar group (ES, 48 g, 238 kcal, with protein, caffeine, taurine, and BCAAs). For one week, participants consumed two bars of their assigned supplement five minutes before and after workouts. After a washout period, they switched supplements. Blood lactate levels and a visual analog scale (VAS) were assessed before, immediately after, and 30 minutes post-workout. Fitness tests (hand grip, broad jump, sit-ups) were conducted at baseline and 30 minutes post-final workout. Data were analyzed using two-way repeated measures ANOVA (p<.05), 95 % confidence intervals, and magnitude inferences. Results : Hand grip strength (t=-5.60, p=.000), broad jump (t=-3.43, p=.003) and sit up (t=-3.94, p=.001) were significantly increased in the ES group. Compared to CH group, there was a significant time and group interactions for blood lactate level (F=5.51, p=.008) and VAS(F=31.67, p=.000) in the ES group. Conclusion : Pre- and post-workout energy bar supplementation may have a beneficial effect on blood lactate clearance and fitness in trained CrossFit individual. The combination of proprietary supplements taken may provide benefits for removing the blood lactate during high-intensity functional exercise.

The Study of the Relationships among Service Quality, Satisfaction, and Revisit Intention of Franchise Snack Bar - Focused on Busan Area - (프랜차이즈 분식점의 서비스 품질이 고객만족과 재방문 의도에 미치는 영향 - 부산 지역을 중심으로 -)

  • Lee, Soon-A;Lee, Sang-Mook;Hahm, Sung-Pil
    • Culinary science and hospitality research
    • /
    • v.21 no.6
    • /
    • pp.264-279
    • /
    • 2015
  • This study is conducted to investigate the relationships among service quality, satisfaction, and revisit intention of franchise snack bars customers located in Busan. The quality of franchise Korean snack bars' service was estimated by examining three sub-dimensions: service environment factors, interaction factors, and outcome quality factors, which are classified from Brady & Cronin's third-dimensional model. The survey was performed from March 9th to March 13th in 2015. Total 300 questionnaires were distributed and 272 questionnaires were employed for final analysis. SPSS 21.0 program was used to derive the following: factor analysis, reliability analysis, correlation, simple regression and multiple regression analysis. In results, the approachableness such as convenience for access was the most important reason when people choose a franchise Korean snack bar company followed by food taste and reasonable price. In addition, the results indicate that service environment quality, interaction quality, and outcome quality have all positive impact on the customers' satisfaction as well as revisit intention. Specifically, outcome quality have the greatest influence on the satisfaction and revisit intention among three service quality factors. This outcome proves that Korean snack bar franchise companies need to investigate more to improve their outcome quality such as food quality and serving time to satisfy customers. In conclusion, current study confirmed the relationships among service quality, satisfaction, and revisit intention in context of franchise snack bar stores. These results will suggest the snack bar foodservice segmentation as valuable marketing strategic, and that it can be utilized as a fundamental data to establish an efficient business plan in the industry.

A Study on the Relationships among Service Quality, Perceived Benefit, Value, and Behavioral Intention as Perceived by Franchise Snack Bar Restaurant Consumers - Application of Means-End Chain Theory - (수단-목적사슬이론을 적용한 프랜차이즈 분식점의 서비스 품질, 지각된 혜택, 가치 그리고 행동의도 간의 관계 분석)

  • Park, Hye-Bin;Lee, Soon-A;Yu, Seo Young
    • Culinary science and hospitality research
    • /
    • v.22 no.3
    • /
    • pp.183-197
    • /
    • 2016
  • This study was conducted to investigate the relationships among service quality, perceived benefit, perceived value and behavioral intention as perceived by franchise snack bars customers. The service quality of franchise snack bars' was tested in three sub-dimensions: environmental quality interaction quality, and outcome quality, which are based on Brady & Cronin's third-dimensional model. A total of 450 survey questionaires were distributed from March 9th to November 12th in 2015, of whi 411 questionnaires were deemed suitable for statistical analysis. SPSS 20.0 program was employed to conduct frequency analysis and reliability analysis, while AMOS 20.0 program was used to test the hypotheses. The results revealed that all three elements of service quality have a positive impact on perceived benefit. In particular, the outcome quality element had the greatest influence on perceived benefit. In sum, customers of a franchise snack bar considered outcome variables such as food taste, reasonable amount, and general quality of food as the most important factors to fulfill the benefit. This results suggest that Korean snack bar franchise companies need to consider improvements to outcome quality features, such as food quality. In addition, perceived benefit was a critical antecedent of perceived value, which was itself a significant predictor of behavioral intention. In conclusion, this study applied the means-end chain theory on franchise sank bar segmentation, as well as three dimension service quality model as developed by Brady and Cronin, and found results that will enable meaningful strategics for snack bar foodservice segmentation in pursuit of the development of efficient business plans, and that can be utilized as a theoretical data for future studies.

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.