• Title/Summary/Keyword: Impact bar

Search Result 211, Processing Time 0.022 seconds

Structural Safety Analysis According to the Shape of Door Impact Bar (도어 충격봉의 형상에 따른 구조 안전 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2012
  • In this study, the safest model can be selected by the simulation result of structural safety analysis according to the shape of impact bar affected at side door of automobile. The open sectional model of semicircle type has the lowest deformation and stress among 4 kinds of models. As the weight of this model has 30% in comparison with other models, it becomes most economical and stable. As the open sectional model of cap type the highest deformation and stress among 4 kinds of models, it becomes weakest. The closed models with circular and rectangular types has the stress far lower than cap type. The maximum deformation is shown at the center part of impact bar but the maximum stress occurs at the joint part between impact bar and frame.

Impact Fracture Behavior of Ceramic Plates Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Shin, Hyung-Seop;Bae, Young-Jun;Oh, Sang-Yeob;Kim, Chang-Uk;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.561-566
    • /
    • 2001
  • A long bar impact test to alumina plates(AD 85 and AD 90) was carried out by using fabricated impact testing apparatus. The apparatus adopting a long bar of 2.1m in length made it possible to measure directly the applied impact force to the specimen during bar impact. The dimension of specimens was $33{\times}33mm$ and thickness was 3.4mm. Confinement of D2=18mm outer diameter and D1=10.5mm inner diameter was used to provide contact pressure to the specimen. Contact pressure of p=100 or 200MPa was applied to specimen before impact test. Damage caused in those cases were compared with the case of without contact pressure. The damage of specimen was different depending upon the pressure level of confinement. The existence of confinement had suppressed the development of radial cracks from the bottom of specimen and reduced the extent of damage as compared with cases without contact pressure(p=0MPa). Because the application of contact pressure to the specimen increased the apparent flexural stiffness of specimen during bar impact, it had produced the change of developed damage in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates.

  • PDF

Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Choe, Su-Yong;Seo, Chang-Min;Jang, Sun-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

The Parametric Study of the Design Variables on the SRS of Pyroshock Resonant Bar (파이로 충격 모사 시험 장치 주요 매개변수에 따른 SRS 분석)

  • Jeon, Hyeonkyu;Kim, Munguk;Kim, Minsung;Kwon, Yeongmin;Yu, Yejin;Kim, In-Gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.413-421
    • /
    • 2018
  • The pyroshocks can cause failure of electronics devices and structures. Metal-metal impact methods are utilized to simulate mechanical pyroshock, and to adjust the knee frquency of the SRS(Shock Response Spectrum) through resonant structures. In this paper, the major parameters of pyroshock simulation device which affect the SRS were examined. Through the Hertzian contact law and the modal characteristics of the resonant bar, it was found that the SRS is affected by the length and mass of a bar and various impact conditions such as velocity and mass of impactor. The characteristics due to the geometric parameters of a resonant bar was analyzed by performing FEA and also the resonant bar was designed and fabricated. Through the pyroshock simulation test, the characteristics of SRS due to the variation of impact parameters were examined.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

DROP IMPACT ANALYSIS OF PLATE-TYPE FUEL ASSEMBLY IN RESEARCH REACTOR

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Lee, Byung-Ho;Oh, Jae-Yong;Tahk, Young-Wook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.529-540
    • /
    • 2014
  • In this research, a drop impact analysis of a fuel assembly in a research reactor is carried out to determine whether the fuel plate integrity is maintained in a drop accident. A fuel assembly drop accident is classified based on where the accident occurs, i.e., inside or outside the reactor, since each occasion results in a different impact load on the fuel assembly. An analysis procedure suitable for each drop situation is systematically established. For an accident occurring outside the reactor, the direct impact of a fuel assembly on the pool bottom is analyzed using implicit and explicit approaches. The effects of the key parameters, such as the impact velocity and structural damping ratios, are also studied. For an accident occurring inside the reactor, the falling fuel assembly may first hit the fixing bar at the upper part of the standing fuel assembly. To confirm the fuel plate integrity, a fracture of the fixing bar should be investigated, since the fixing bar plays a role in protecting the fuel plate from the external impact force. Through such an analysis, the suitability of an impact analysis procedure associated with the drop situation in the research reactor is shown.

A Resistance Property Against High Velocity Impact on Oxynitride Glasses (질화유리의 고속충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.646-652
    • /
    • 2006
  • Several oxynitride glasses were fabricated by means of adding $Si_3N_4$ powders as nitrogen source to Ca-Al-Si-O-N (CAS) and Mg-Al-Si-O-N (MAS) glass powders, and heat-treated in graphite crucible at 1600$^{\circ}C$ for 1 h. The physical and mechanical properties as well as impact resistance were generally increased and compared with each other. The impact resistance properties of those manufactured glasses were evaluated by DOP (depth of penetration) method which is a way to analyze armor materials. There were two means to be used herein; the copper jet impacted at hyper velocity by exploding K2l5 warhead and tungsten heavy alloy (WHA) impact bar at high velocity by firing in 30 mm solid propellent gun. The impact resistance properties against copper jet were increased and then decreased with increasing nitrogen content, while those against WHA bar were not changed apparently with nitrogen content.

Experimental Study on the Dynamic Damage Mechanism of Rocks Under Different Impact Loadings (단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Ki, Seung-Kon;Park, Chan;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.545-557
    • /
    • 2009
  • In order to investigate dynamic damage mechanism of brittle materials, Split Hopkinson Pressure Bar (SHPB) have been adapted to apply different impact levels to rocks in South Korea. High resolution X-ray Computed Tomography (CT) was used to estimate the damage in tested rock samples nondestructively. The cracks which are parallel to the loading axis are visible on the contact surface with the incident bar under lower level of impact. The surface cracks disappeared with increment of impact level due to confined effect between the incident bar and sample, while axial splitting are happened near the outer surface.

A Study on the Threshing Mechanism of Rasp-Bar Type Thresher -Dynamic Analysis of Threshing Process- (줄봉형 탈곡기의 탈곡장치에 관한 연구 -탈곡과정의 역학적 분석-)

  • Park, K.J.;Clark, S.J.;Dwyer, S.V.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.371-381
    • /
    • 1993
  • Threshing operation is performed by impact, compression and friction forces inside the thresher. These values should be appropriate to the crop condition to enhance the threshing and separating efficiency and to decrease the grain damage. To analyze the threshing process inside the rasp-bar type thresher, impact, friction and compression forces were measured using transducers with strain gage circuits. To measure the impact forces and friction forces between the rasp-bar and crop, full bridge strain gage circuit was built on the rasp-bar holder. To measure the compression forces and circumferential friction forces between the concave and crop, two sets of full bridge strain gage circuits were built on the T-type concave transducer. Threshing work of wheat crop with 12% of moisture content was performed at 3 levels of compression ratio and with 3 replications. Each transducer could not measure the exact forces continuously because the transducer oscillates with the forces. However they could measure maximum forces and force distribution according to the time. Average friction coefficients between crop and concave was 0.61 not showing any significant difference according to the compression ratio. Average acceleration of the crop in the cylinder appeared from $70.6m/s^2$ to $140.8m/s^2$ according to the compression ratio. The velocity of the crop at the exit of the cylinder appeared from 10.7m/s to 15.0m/s according to the compression ratio.

  • PDF

Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test (Taylor 봉 충격시험을 통한 고 변형률속도하 금속재료의 동적변형거동 평가)

  • Bae, Kyung Oh;Shin, Hyung Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.791-799
    • /
    • 2016
  • To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding $10^4\;s^{-1}$. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.