• Title/Summary/Keyword: Impact ball

Search Result 325, Processing Time 0.022 seconds

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF

Evaluation of Engineering Properties of Retaining Wall Material Using Fiber Reinforcement (섬유보강재를 이용한 흙막이 벽체 재료의 공학적 특성평가)

  • Lee, Jong-Ho;Lee, Kang-Il;Yu, Nam-Jae;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.243-252
    • /
    • 2019
  • Recently, as the utilization of underground space increases, the demand for underground excavation increases. In this study, the concrete mixture with a new material was used to develop and evaluate the stability of the CS-H wall that can greatly minimize the problems of existing wall and minimize the impact of ground depression and surrounding ground that may occur in the future for excavation of over 30 m deep in urban areas. The fiber reinforcement formulation of steel fibers, synthetic fibers, and glass fibers, along with fine aggregate parts of PS-ball and ferronickel, were mixed. The Mixture ratios were determined by conducting slump test compresive strength test, modulus of elastic test, flexural strength test, splitting tensile strength test and conductivity test. As a result of the test, the steel fiber mixture showed very good results compared to other reference values in all items, and it is considered to be the most suitable for the CS-H wall to be developed.

Correlation Analysis of The X-Factor, X-Factor Stretch and Swing-Related Factors during Drive Swing (드라이버 스윙 시 X-Factor, X-Factor Stretch와 스윙 관련 변인의 상관관계 분석)

  • Lee, Kyung-Hun;Kwon, Moon-Seok;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.149-155
    • /
    • 2015
  • Purpose : Recently, many researchers and golf coachers demonstrated that X-factor and X-factor stretch had a co-relationship with driving distance. However, its relationship is still controversial and ambiguous. Thus, the aim of this study was to examine the relationship among X-factor, X-factor stretch and swing-related factors, including driving distance in elite golfers. Method : Seventeen male elite golfers (handicap: ${\leq}4$) with no history of musculo-skeletal injuries participated in the study. Thirty spherical retro-reflective markers were placed on including the middle point of PSIS, the right/left ASIS, the right/left lateral acromion of the scapula, driver head and shaft grip. All motion capture data was collected at 100Hz using 6 infrared cameras. Carry distance, club speed, ball speed, smash factor, launch angle, and spin rate were collected from radar-based device, TrackMan. Results : Pearson's correlation coefficient method was used to find the correlations among X-factor, X-factor stretch and swing-related factors. Positive correlations between driving distance and other swing-related factors which include club speed(r=.798, p<.001), and ball speed(r=.948, p<.001) were observed. In contrast to the swing-related factors, X-factor and X-factor stretch had no relationship to driving distance. Conclusion : These results indicate that X-factor and X-factor stretch are not key regulators in driving distance.

The Effects of a Bridging Exercise With Hip Adductor Contraction on the EMG Activities of Abdominal Muscles in Patients With Sub-Acute Stroke

  • Park, Chan-bum;Ahn, Jin-young;Kim, Ho-young;Lee, Jong-ha;Jeon, Hye-seon
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Background: Muscle weakness and impaired trunk muscle control are common in stroke patients. The bridging exercise (BE) is generally used for trunk stabilization and improving the overall function of stroke patients. The effectiveness of the BE with hip adductor contraction (BEHA) in facilitating trunk muscle activation has been well studied in healthy adults. However, the impact of BEHA in sub-acute stroke patients has not yet been investigated. Objects: The purpose of this study was to determine the effects of BEHA on the electromyography (EMG) activities and the asymmetry of the rectus abdominis (RA), external oblique (EO) and internal oblique (IO) abdominal muscles. Methods: Twenty participants with sub-acute stroke (11 males and 9 females) were recruited. Each participant was asked to perform bridging exercises for five seconds under three different conditions: BE in a neutral position (BEN), BEHA with a large ball (BEHAL) and BEHA with a small ball (BEHAS). The EMG amplitudes of the bilateral RA, EO and IO and the asymmetry of the EMG activity between the sound and affected sides were compared among the conditions. The significance level was set at ${\alpha}=.05$. Results: The EMG activities of RA, EO and IO were significantly greater during BEHAL and BEHAS than during BEN (p<.05); the asymmetry of the RA, EO and IO decreased significantly during BEHAL and BEHAS compared to BEN (p<.05). However, no measured variables showed any significant differences between BEHAL and BEHAS (p>.05). Conclusion: This study compared the EMG activities of the RA, EO and IO on both sides and the asymmetry of the RA, EO and IO during BEN, BEHAL and BEHAS. Our findings suggest that BEHA was more effective for individuals with hemiplegic stroke at facilitating and normalizing abdominal muscle control than BEN.

Enzymatic Hydrolysis of Crystalline Chitin in an Agitated Bead Reaction System and Its Reaction Characteristics

  • Lee, Yong-Hyun;Bae, Young-Ki;Jeong, Eui-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.432-438
    • /
    • 1996
  • Native crystalline chitin was hydrolyzed in an agitated bead reaction system using crude chitinase excreted from Aspergillus fumigatus JC-19. The reaction was enhanced significantly, and the concentration and yield of reducing sugar after 48 hours were measured to be 35.42 g/I (w/v) and 0.64, respectively, around 1.86 times higher than those of the conventional system that was carried out without glass beads. The effect of reaction conditions, such as the amounts of chitin, chitinase and glass beads, and the size of glass bead, were examined. Ball milled chitin was also hydrolyzed in the agitated bead reaction system, the conversion yield and reaction rate of ball milled chitin for 24 hours increased up to 0.87 and 48.02 g/I, respectively. Chitinase showed relatively high stability in the agitated bead reaction system, particularly in the presence of enzyme stabilizer, $Ca^{++}$, which played a critical role in preventing the deactivation of chitinase by the physical impact of glass beads. The variations of the structural features of chitin during the reaction were followed by SEM and X-ray diffraction, and the enhanced hydrolysis reaction was caused by both the fragmentation of chitin particles and the destruction of the crystalline structure owing to the synergic effects of the attrition of glass beads and the hydrolytic action of chitinase.

  • PDF

Case study on frequency bands contributing the single number quantity for heavy-weight impact sound based on assessment method changes (중량충격음 평가방법 변화에 따른 단일수치평가량 기여 주파수 대역 사례 분석)

  • Hye-kyung Shin;Sang Hee Park;Kyoung-woo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.565-571
    • /
    • 2023
  • With the introduction of the post-verification system, the measurement of floor impact noise performance on-site has become mandatory, and the evaluation method has changed. To track the performance changes since the policy implementation, research is needed on how the characteristics of heavyweight impact sound change according to the varied evaluation method. In this study, we analyzed the contribution rate of the frequency band-specific sound pressure level on the single-number quantity for a multi-family housing unit with the same floor plan and floor structure, comprising 59 households, based on the changed impact sources and evaluation indicators. It is difficult to compare simply because the method of calculating contributions by frequency band according to the single-day evaluation is different, but the average contribution rate of 63 Hz was 80.8 % in the evaluation method before the introduction of the post-confirmation system (Tire measurement and evaluated as L'i,Fmax,AW), and the average contribution rate of 125 Hz was 19.2 %. The current evaluation method (rubber ball measurement and evaluation as L'iA,Fmax) shows that the contribution rate has decreased to 33.1 % on average at 50 Hz ~ 80 Hz, 58.7 % on average at 100 Hz ~ 160 Hz, 6.9 % on average at 200 Hz ~ 315 Hz, and 1.3 % on average at 400 Hz ~ 630 Hz. This result is a case analysis for the target apartment house, and it is necessary to analyze measurement data for more diverse apartment houses.

Breakage and Liberation Characteristics of Iron Ore from Shinyemi Mine by Ball Mill (신예미 광산 철광석의 볼밀 분쇄 및 단체분리 특성 연구)

  • Lee, Donwoo;Kwon, Jihoe;Kim, Kwanho;Cho, Heechan
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.11-23
    • /
    • 2020
  • This study aims to investigate breakage and liberation characteristics of iron ore from Shinyemi mine, Jeongseon by ball mill. Parameters of breakage functions for three grade samples of iron ore were obtained using single-sized-feed breakage test and back-calculation based on nonlinear programming. The results showed that with the increase in the grade of iron ore, the breakage rate factor decrease whereas the particle size sensitivity decreases. This results from retardation of microcrack-propagation by magnetite grain in the ore. Breakage distribution analysis showed that the breakage mechanism appear to be impact fracture dominant with the increase of grade owing to the stress distribution effect by magnetite grain. Degree of liberation (DOL) increased with the increase in grade and decrease in particle size, respectively. Using the breakage function and size-DOL relationship, a model that can predict time-dependent-DOL is established. When scale-up factors from operating condition are available, the model is expected to be capable of predicting size and DOL with time in actual mining process.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Mechanical Properties and Impact Resistance Review of Carbon Fiber Reinforced Cement Composites with Different Fiber Contents and Fiber Lengths (섬유혼입률 및 섬유길이 변화에 따른 탄소섬유 보강시멘트 복합재료의 역학적 특성과 내충격성 검토)

  • Heo, Gwang-Hee;Song, Ki-Chang;Park, Jong-Gun;Han, Yoon-Jung;Lim, Cae-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.86-95
    • /
    • 2019
  • Recently, the applications of carbon fiber have been broader than ever when it comes to such industrials as automobiles, ships, aerospace, civil engineering and architecture because of their lightweight-ness and high mechanical properties. This study analyzed mechanical properties and flexural behavior of carbon fiber reinforced cement composites(CFRC) with different fiber contents and fiber lengths, and also impact resistance by natural drop test on mortar specimens was compared and examined. In addition, contents of carbon fiber(CF) were varied by 0.5%, 1.0%, 2.0% and 3.0%. Fiber lengths was used for 6 mm and 12 mm, respectively. As a result of the test, the flow value was very disadvantageous in terms of fluidity due to the carbon fiber ball phenomenon, and the unit weight was slightly reduced. In particular, the compressive strength was decreased with increasing carbon fiber contents. On the other hand, the flexural strength was the highest with 12 mm fiber length and 2% fiber content. As the results of the impact resistance test, the specimens of plain mortar takes about 2~3 times to final fracture, while the specimens of CFRC is somewhat different depending on the increase of the fiber contents. However, when the fiber length is 12 mm and the fiber content is 2%, the impact resistance was the highest.

Kinetic Analysis of Golf Fat Shot (골프 Fat shot에 대한 운동역학적 분석)

  • Sohn, Jee-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.523-532
    • /
    • 2013
  • When the golf club hits the ground prior to making contact with the golf ball, we define it as 'fat shot'. The aim of this research was to investigate the difference between normal shot and fat shot in golf. Five candidates playing as recreational golfer participated in this research and they were all right-handed people. Time phase between each event, wrist cocking angle, elbow extension-flexion angle, backswing height, pelvis angle, thorax angle, L-GRF, R-GRF, pelvis linear velocity, pelvis angular velocity and COG path were calculated. For statistical analysis the paired T-test was used. An early un-cocking, an early right elbow extension and impact with leaving their weight behind foot were not reasons of fat shot. Backswing height, X-Factor, pelvis angle and thorax rotation angle were not different between normal shot and fat shot. But we could find a pattern of abrupt pelvic movement and weight shift to target direction just before impact in case of fat shot. In addition fat shot showed time-delayed and small value of pelvis linear velocity pattern to upward during downswing phase as against normal shot.