• Title/Summary/Keyword: Impact absorption energy

Search Result 271, Processing Time 0.029 seconds

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Numerical and Experimental Investigation on Impact Performance of Fiber Metal Laminates Based on Thermoplastic Composites (열가소성 복합재료를 기반한 섬유금속적층판의 충격 거동에 관한 실험 및 수치적 연구)

  • Lee, Byoung-Eon;Kang, Dong-Sik;Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.566-574
    • /
    • 2016
  • Fiber metal laminates, which are hybrid materials consisting of metal sheets and composite layers, have contributed to aerospace and automotive industries due to their reduced weight and improved damage tolerance characteristics. In this study, the impact performance of the laminates, which are comprised of a self-reinforced polypropylene and two aluminum sheets, and the pure aluminum alloy sheet material were investigated experimentally via numerical simulation. In order to compare the impact performance, the laminates and aluminum alloy were examined by assessing the impact force, energy time histories, and specific energy absorption. ABAQUS is a commercial software that is used to simulate the actual drop-weight tests. Based on this study, it is noted that the impact performance of the laminates was superior to that of the aluminum alloy. In addition, a good agreement between the experimental and numerical results can be achieved when the impact force and energy time histories from the experiments and the numerical simulations are compared.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

A study on crash energy absorption design of passenger-car extreme structure of tilting train prototype (한국형 고속틸팅열차의 중간부 충돌에너지 흡수구조에 대한 연구)

  • Kwon T.S.;Jung H.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.326-330
    • /
    • 2005
  • Crahworthy design of trains is now indispensable procedure in modern railway vehicle design for ensuring the safety of passengers and crew. It is now widely recognized that a more strategic approach is needed in order to absorb higher level energy in a controlled manner and minimize passenger injuries effectively. The first design step in this strategic approach is the design of the front end structure(so called HE extremities) to absorb a large part of total impact energy and then the structure of passengers non-accommodation zones(so called HE extremities) is designed to absorb the rest of impact energy. In this paper, the passengers entrance door area is selected as the LE(low energy) extremities and the design of the LEE was carried out. The main part of LEE design procedures is the design of energy absorbing tubes. For this purpose, the several tube candidates are introduced and compared to each others with numerical crash simulation.

  • PDF

The Influence of Shield Gas Ratio on the Toughness of A15083-0 GMAW Weld Zone (A15083-O GMAW 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;김건호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.113-199
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and -196$^{\circ}C$ ) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -85$^{\circ}C$, and the maximum load and maximum displacement were shown the highest and the lowest at -196$^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the others specimens was shown that the lower temperature, the higher absorption energy slightly up to -85$^{\circ}C$ but the energy was decreased so mush at -196$^{\circ}C$

  • PDF

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

A Study on the Optimized Design of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 최적설계에 관한 연구)

  • Cho, Seung-Hyun;Kim, Do-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, the stress and strain characteristics of a helmet shell structure have been analyzed by using the finite element method and Taguchi's design method as functions of the material properties, the thickness of a helmet, the thickness and the number of a bead frame. The optimized design of the helmets for a firefighter and a gas worker is very important for increasing the strength safety and an impact energy absorption capacity of a helmet shell due to an impulsive external force. Thus, the optimized design data of the helmet indicated that the uniform thickness of a helmet shell may be reduced for reducing the total weight of a helmet and increasing the strain energy absorption rate, but the thickness and the number of a bead frame would be increased for increasing the impact strength of the helmet.

  • PDF

The impact fracture behaviors of CFRP/EVA composites by drop-weight impact test

  • Go, Sun-Ho;Kim, Hong-Gun;Shin, Hee-Jae;Lee, Min-Sang;Yoon, Hyun-Gyung;Kwac, Lee-Ku
    • Carbon letters
    • /
    • v.21
    • /
    • pp.23-32
    • /
    • 2017
  • A drop weight impact test was conducted in this study to analyze the mechanical and thermal properties caused by the changes in the ratio of carbon fiber reinforced plastic (CFRP) to ethylene vinyl acetate (EVA) laminations. The ratios of CFRP to EVA were changed from 10:0 (pure CFRP) to 9:1, 8:2, 6:4, and 5:5 by manufacturing five different types of samples, and at the same time, the mechanical/thermal properties were analyzed with thermo-graphic images. As the ratio of the CFRP lamination was increased, in which the energy absorbance is dispersed by the fibers, it was more likely for the brittle failure mode to occur. In the cases of Type 3 through Type 5, in which the role of the EVA sheet is more prominent because it absorbs the impact energy rather than dispersing it, a clear form of puncture failure mode was observed. Based on the above results, it was found that all the observation values decreased as the EVA lamination increased compared with the CFRP lamination. The EVA lamination was thus found to have a very important role in reducing the impact. However, the strain and temperature were inversely propositional.

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).