• Title/Summary/Keyword: Impact Simulation

Search Result 2,325, Processing Time 0.024 seconds

Dynamic Behavior of Triaxial Micropile Under Varying Installation Angle: A Numerical Analysis (수치해석을 통한 설치 경사각도에 따른 삼축내진말뚝의 동적 거동특성)

  • Jeon, Jun-Seo;Meron Alebachew Mekonnen;Kim, Yoon-Ah ;Kim, Jong-Kwan;Yoo, Byeong-Soo ;Kwon, Tae-Hyuk;An, Sung-Yul ;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.41-51
    • /
    • 2023
  • This study employs three-dimensional simulation through FLAC3D to investigate the impact of installation angles on the dynamic characteristics of Triaxial Micropiles. The numerical model is validated against centrifuge test results to ensure accuracy. The findings reveal significant influences of the installation angle on the dynamic behavior of Triaxial Micropiles. Specifically, under seismic conditions such as the Capetown and San Fernando earthquakes, the lowest recorded values for peak bending moment and settlement occurred at an installation angle of 15 degrees. In contrast, when subjected to an artificial earthquake with a frequency of 2 Hz (Sine 2 Hz), Micropiles installed at 0 degrees exhibited the lowest peak bending moment, maximum axial load, and settlement values.

FGRS(Fish Growth Regression System), Which predicts the growth of fish (물고기의 성장도를 예측하는 FGRS(Fish Growth Regression System))

  • Sung-Kwon Won;Yong-Bo Sim;Su-Rak Son;Yi-Na Jung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.347-353
    • /
    • 2023
  • Measuring the growth of fish in fish farms still uses a laborious method. This method requires a lot of labor and causes stress to the fish, which has a negative impact on mortality. To solve this problem, we propose the Fish Growth Regression System (FGRS), a system to automate the growth of fish. FGRS consists of two modules. The first is a module that detects fish based on Yolo v8, and the second consists of a module that predicts the growth of fish using fish image data and a CNN-based neural network model. As a result of the simulation, the average prediction error before learning was 134.2 days, but after learning, the average error decreased to 39.8 days. It is expected that the system proposed in this paper can be used to predict the growing date and use the growth prediction of fish to contribute to automation in fish farms, resulting in a significant reduction in labor and cost savings.

Structural dynamics insights into the M306L, M306V, and D1024N mutations in Mycobacterium tuberculosis inducing resistance to ethambutol

  • Yustinus Maladan;Dodi Safari;Arli Aditya Parikesit
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.32.1-32.11
    • /
    • 2023
  • Resistance to anti-tuberculosis drugs, especially ethambutol (EMB), has been widely reported worldwide. EMB resistance is caused by mutations in the embB gene, which encodes the arabinosyl transferase enzyme. This study aimed to detect mutations in the embB gene of Mycobacterium tuberculosis from Papua and to evaluate their impact on the effectiveness of EMB. We analyzed 20 samples of M. tuberculosis culture that had undergone whole-genome sequencing, of which 19 samples were of sufficient quality for further bioinformatics analysis. Mutation analysis was performed using TBProfiler, which identified M306L, M306V, D1024N, and E378A mutations. In sample TB035, the M306L mutation was present along with E378A. The binding affinity of EMB to arabinosyl transferase was calculated using AutoDock Vina. The molecular docking results revealed that all mutants demonstrated an increased binding affinity to EMB compared to the native protein (-0.948 kcal/mol). The presence of the M306L mutation, when coexisting with E378A, resulted in a slight increase in binding affinity compared to the M306L mutation alone. The molecular dynamics simulation results indicated that the M306L, M306L + E378A, M306V, and E378A mutants decreased protein stability. Conversely, the D1024N mutant exhibited stability comparable to the native protein. In conclusion, this study suggests that the M306L, M306L + E378A, M306V, and E378A mutations may contribute to EMB resistance, while the D1024N mutation may be consistent with continued susceptibility to EMB.

Mechanical evolution law and deformation characteristics of preliminary lining about newly-built subway tunnel closely undercrossing the existing station: A case study

  • Huijian Zhang;Gongning Liu;Weixiong Liu;Shuai Zhang;Zekun Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.525-538
    • /
    • 2023
  • The development of a city is closely linked to the construction and operation of its subway system. However, constructing a new subway tunnel under an existing station is an extremely complex task, and the deformation characteristics and mechanical behavior of the new subway tunnel during the excavation process can greatly impact the normal operation of the existing station. Although the previous studies about the case of underpass engineering have been carried out, there is limited research on the condition of a newly-built subway tunnel that closely undercrossing an existing station with zero distance between them. Therefore, this study analyzes the deformation law and mechanical behavior characteristics of the preliminary lining of the underpass tunnel during the excavation process based on the real engineering case of Chengdu Metro Line 8. This study also makes an in-depth comparison of the influence of different excavation methods on this issue. Finally, the accuracy of numerical simulation is verified by comparing it with on-site result. The results indicate that the maximum bending moment mainly occurs at the floor slab of the preliminary lining, while that of the ceiling is small. The stress state at the ceiling position is less affected by the construction process of the pilot tunnel. Compared to the all-in-one excavation method, although the process of partial excavation method is more complicated, the deformation of preliminary lining caused by it is basically less than the upper limit value of the standard, while that of the all-in-one excavation method is beyond standard requirements.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

A Study on UAV Tracking Method with Anti-Jamming Function for Forest Resource Management (산림자원 관리를 위한 항 재밍 기능을 보유한 무인항공기국 추적방법에 관한 연구)

  • Jin-Woo Jung;Yong-Gyu Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1245-1258
    • /
    • 2023
  • To efficiently manage forest resources, it is essential to deploy multiple unmanned aerial vehicles equipped with various sensors simultaneously. Consequently, the ground control station antenna should not only maintain continuous tracking of the target station but also minimize the impact of radio interference on other unmanned aerial vehicle stations. In this paper, we presented beam forming techniques based on the VPR algorithm within a ground control station constructed using a phased array antenna system. Through simulation experiments in diverse unmanned aerial vehicle operating environments, it was demonstrated that the presented method enables not only the continuous tracking of operational unmanned aerial vehicles but also the suppression of radio interference by establishing a continuous pattern null for multiple operational radio interference sources.

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Structural response of a three-story precast concrete structure subjected to local diaphragm failures in a shake table test

  • Ilyas Aidyngaliyev;Dichuan Zhang;Robert Fleischman;Chang-Seon Shon;Jong Kim
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • Floor inertial forces are transferred to lateral force resisting systems through a diaphragm action during earthquakes. The diaphragm action requires floor slabs to carry in-plane forces. In precast concrete diaphragms, these forces must be carried across the joints between precast floor units as they represent planes of weakness. Therefore, diaphragm reinforcement with sufficient strength and deformability is necessary to ensure the diaphragm action for the floor inertial force transfer. In a shake table test for a three-story precast concrete structure, an unexpected local failure in the diaphragm flexural reinforcement occurred. This failure caused loss of the diaphragm action but did not trigger collapse of the structure due to a possible alternative path for the floor inertial force transfer. This paper investigates this failure event and its impact on structural seismic responses based on the shake table test and simulation results. The simulations were conducted on a structural model with discrete diaphragm elements. The structural model was also validated from the test results. The investigation indicates that additional floor inertial force will be transferred into the gravity columns after loss of the diaphragm action which can further result in the increase of seismic demands in the gravity column and diaphragms in adjacent floors.

Policy evaluation of the rice market isolation system and production adjustment system

  • Dae Young Kwak;Sukho Han
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.629-643
    • /
    • 2023
  • The purpose of this study was to examine the effectiveness and efficiency of a policy by comparing and analyzing the impact of the rice market isolation system and production adjustment system (strategic crops direct payment system that induces the cultivation of other crops instead of rice) on rice supply, rice price, and government's financial expenditure. To achieve this purpose, a rice supply and demand forecasting and policy simulation model was developed in this study using a partial equilibrium model limited to a single item (rice), a dynamic equation model system, and a structural equation system that reflects the casual relationship between variables with economic theory. The rice policy analysis model used a recursive model and not a simultaneous equation model. The policy is distinct from that of previous studies, in which changes in government's policy affected the price of rice during harvest and the lean season before the next harvest, and price changes affected the supply and demand of rice according to the modeling, that is, a more specific policy effect analysis. The analysis showed that the market isolation system increased government's financial expenditure compared to the production adjustment system, suggesting low policy financial efficiency, low policy effectiveness on target, and increased harvest price. In particular, the market isolation system temporarily increased the price during harvest season but decreased the price during the lean season due to an increase in ending stock caused by increased production and government stock. Therefore, a decrease in price during the lean season may decrease annual farm-gate prices, and the reverse seasonal amplitude is expected to intensify.