• Title/Summary/Keyword: Impact Simulation

Search Result 2,334, Processing Time 0.029 seconds

An Analytic Model for the Optimal Number of Relay Stations in IEEE 802.16j Cooperative Networks (IEEE 802.16j 협력 전송 네트워크에서 최적의 중계국 수를 위한 분석 모델)

  • Jin, Zilong;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.758-766
    • /
    • 2011
  • Cooperative communications are adopted as a promising solution to achieve high data rate over large areas in the future 40 wireless system and the relay station (RS) is the key concept in cooperative communications. However, most existing works in this area focus only on optimal RS selections. In addition, there are only few works consider another crucial issue: how many relay stations we need to place. Only when the number of relay stations is defined, the relay station selection can be performed well. In this paper we derive a formula which describes the impact of varying number of RS on end-to-end link throughput assuming a clustering scheme which is based on Voronoi tessellation. In addition to mathematical analysis on the feasibility of the formula, we also examine its performance through a set of simulations under the Erceg path loss model. Simulation results verify that the link throughput gain of our proposed scheme is promising.

Low Complexity Lattice Reduction for MIMO Detection using Time Correlation of the Fading Channels (페이딩 채널의 시간 상관성을 이용한 Lattice Reduction 기반 MIMO 수신기 계산량 감소 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.523-529
    • /
    • 2010
  • We propose a very low complexity lattice reduction (LR) algorithm for MIMO detection in time varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the unimodular matrices during LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. The simulation results investigated in this letter reveal that the proposed detection scheme requires only 43.4% multiplications and 17.3% divisions of LLL-LR and only 50.2% multiplications and 68.2% divisions of the conventional adaptive LR with almost no performance degradation.

Performance Analysis of D2D Power Control To Compensate Channel Estimation Error

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.65-72
    • /
    • 2020
  • To improve the performance of D2D power control algorithm proposed in the previous work, three modified D2D power control algorithms are proposed to compensate the channel estimation error. Then, we evaluate the performance of three modified D2D power control algorithms in the channel estimation error environment. In real channel environment, the channel estimation is not perfect. To that end, the impact of imperfect channel estimation on the D2D power control algorithm, which was developed with the assumption of perfect channel estimation, has been analyzed in the previous work. Three modified D2D power control algorithms are based on 1) Retransmission, 2) SIR Margin, and 3) Retransmission and SIR Margin. Simulation results show that the Retransmission and SIR Margin approach shows best performance in the sense of the transmit power consumption and the latency.

One Dimensional Analysis on Alcohol Burner Flow for Turbopump Operation (터보펌프 구동용 알코올버너 유동 일차원 해석)

  • Kim, Seong-Lyong;Wang, Seung-Won;Han, Young-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • TPTF (Turbopump Real Propellant Test Facility) at Naro Space Center has used alcohol burner system to simulate the gas flow of gas generator of liquid rocket engine. During the test at TPTF, the temperature and pressure at turbine inlet were smoothly increased while those of the gas generator of engine were constant. Present research developed a simulation code for the burner and the piping system and applied to the system. The calculation results were in good agreement with the test, and confirmed quantitatively that the non-steadiness is due to the heat transfer of the pipe. While the insulation of the pipe is ineffective, the length has a large impact on the turbine inlet condition. The present research clarified the empirically estimation of test condition, and can be applied to determination of the following test conditions.

A Method to Protect Mine Workers in Hot and Humid Environments

  • Sunkpal, Maurice;Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Background: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.

Manufacturing of an FBG sensor imbedded small wind turbine blade (광섬유 격자센서 내장형 소형 풍력발전기 날개 제작)

  • Kim, Chang-Hwan;Yun, Jin-Young;Kim, Hyun-Gyu;Kim, Kwan-Soo;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • A Fiber Bragg Grating (FBG) sensor imbedded small wind turbine blade was manufactured to experimentally investigate the feasibility to embed FBG sensors between layers of glass fiber to monitor dynamic strains of the wind turbine blade. The blade which is similar to a commercial 300 W wind turbine blade was manufactured with glass fiber as a reinforcement and epoxy resin as base material. A total of five FBG sensors including one temperature sensor were imbedded in the blade to sense mechanical strain and temperature. While manufacturing the blade, residual strain and temperature that occurred in the small wind turbine blade were monitored using the imbedded FBG sensor array. To examine the sensor performance, an impact test was carried out. The experimental results from the FBG sensors were close to those from electrical strain gages mounted on the blade root surface. The mode shapes of the blade were analyzed also using a commercial Ansys simulation with a model obtained from a three dimensional laser scanning of the blade.

Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model

  • Choi, Geun-Sik;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny;Kim, Ki-Hyun;Lee, Jin-Hong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.68-79
    • /
    • 2018
  • The Ki-Jang research reactor (KJRR), a new research reactor in Korea, is being planned to fulfill multiple purposes. In this study, as an assessment of the environmental radiological impact, we characterized the atmospheric dispersion and deposition of radioactive materials released by an unexpected incident at KJRR using the weather research and forecasting-mesoscale model interface program-California Puff (WRF-MMIF-CALPUFF) model system. Based on the reproduced three-dimensional gridded meteorological data obtained during a 1-year period using WRF, the overall meteorological data predicted by WRF were in agreement with the observed data, while the predicted wind speed data were slightly overestimated at all stations. Based on the CALPUFF simulation of atmospheric dispersion (${\chi}/Q$) and deposition (D/Q) factors, relatively heavier contamination in the vicinity of KJRR was observed, and the prevailing land breeze wind in the study area resulted in relatively higher concentration and deposition in the off-shore area sectors. We also compared the dispersion characteristics between the PAVAN (atmospheric dispersion of radioactive release from nuclear power plants) and CALPUFF models. Finally, the meteorological conditions and possibility of high doses of radiation for relatively higher hourly ${\chi}/Q$ cases were examined at specific discrete receptors.

Two-Dimensional Hydrodynamic and Water Quality Simulations for a Coinjunctive System of Daecheong Reservoir and Its Downstream (대청호와 하류하천 연속시스템의 2차원 수리·모의)

  • Jung, Yong Rak;Chung, Se Woong;Ryu, In Gu;Choi, Jung Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.581-591
    • /
    • 2008
  • Most of our rivers are fragmented by the presence of at least one large dam. Dams are often the most substantial controller of the flow regimes and aquatic environments of natural river system. The quality of downstream water released from a stratified reservoir is highly dependent on upstream reservoir water quality. Thus, an integrated modeling approach is more efficient, compared to fragmented modeling approach, and necessary to better interpret the impact of dam operation on the down stream water quality. The objectives of this study were to develop an integrated reservoir-river modeling system for Daecheong Reservoir and its downstream using a two-dimensional laterally averaged hydrodynamic and water quality model, and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using filed data obtained in 2004 and 2006. The model showed satisfactory performance in predicting temporal variations of water stage, temperature, and suspended solid concentration. In addition, the reservoir-river model showed efficient computation time as it took only 3 hours for one year simulation using personal computer (1.88 Ghz, 1.00 GB RAM). The suggested modeling system can be effectively used for assisting integrated management of reservoir and river water quality.

Study on Electrical Environmental Obstacle Using a 765kV Double Circuit Test Line (765kV 시험선로를 이용한 전기환경장해 특성연구)

  • Kim, Jeong-Boo;Jo, Seong-Sae;Shin, Goo-Yong;Lee, Dong-Il;Yang, Kwang-Ho;Ahn, Hee-Sung;Bae, Jeong-Hyo;Koo, Ja-Yoon;Min, Seok-Weon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1517-1519
    • /
    • 1994
  • This paper describes electrical environmental study of a 765kV double circuit test line. Corona performance on several candidate conductor bundles has been investigated in the corona cage (single phase simulation facility) since 1984. We have known that six RAIL conductor bundle is the most suitable for the 765kV transmission Line, [3] To investigate electrical environmental impact of the future commerciale line, we build a full sacle 765kV test line in 1993. The test results of Audible Noise, Radio Interference, TV Interference from August, 1993 to Jan. 1994 were measured as $48.7[dBA](L_{50})$. $57.4[dB{\mu}V/m]$(Fair weather, $L_{50})$. $14.5[dB${\mu}$V/m]$(Fair weather, $L_{50}$). We have found that the Audible Noise data were very close to the predicted(48.5 [dBA]) by BPA Corona and Field Effects Computer program, however, the RI and TVI data were much higher than predicted(42 [dBmV/m], $7.9[dB{\mu}V/m)$ by the BPA program. We have investigating the reason of the difference. In the constructing of full scale test line, we developed the tubular tower, 765kV test transformer and hardwares of 765kV transmission line insulator strings. Also we will investigate the effects of plants under the 765kV test Line.

  • PDF

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.