• 제목/요약/키워드: Impact Power Characteristics

검색결과 428건 처리시간 0.036초

전력선 통신이 해상 통신에 주는 전파 방사 영향 연구 (A Study on Impact of emissions from power line communication interfering with marine radio services)

  • 장동원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.115-118
    • /
    • 2003
  • 본 고에서는 전력선 통신이 해상 통신 서비스에 주는 간섭에 대해서 기술하였다. 전력선 통신 뿐 만 아니라 통신선을 이용하는 ADSL이나 VDSL은 고속의 데이터 전송을 위해 광대역을 사용하는데 이때 발생되는 전파 방사가 해상 통신 둥 기존 무선 서비스에 간섭을 주게 된다. 본 고에서는 30MHz이하의 대역에서 사용되고 있는 해상 통신 서비스가 전력선 통신에 의해서 간섭을 받게 될 수 있는 가능성을 분석하고 이러한 간섭을 피하기 위한 보호 대책에 대해서 기술하였다.

  • PDF

디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향 (Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine)

  • 유동훈
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

중국 1 MWe급 태양열발전시스템에 대한 기초 운전해석 (Preliminary Simulation Study on 1 MWe STP System in China)

  • ;;강용혁;김종규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.698-701
    • /
    • 2007
  • DAHAN, the first 1 MWe Solar Power Tower system locates north to Beijing where nearby The Great Wall is now under construction with cooperation between China and Korea. Results in predicting the preliminary performance of this central receiver system are presented in this paper. Operating cycles under some typical weather condition days are simulated and commented. These results can be used to assess the impact of alternative plant designs or operating strategies on annual energy production, with the final objective being to optimize the design of central receiver power plants. Two subsystems are considered in the system simulation: the solar field and the power block. Mathematic models are used to represent physical phenomena and relationships so that the characteristics of physical processes involving these phenomena can be predicted. Decisions regarding the best position for locating heliostats relative to the receiver and how high to place the receiver above the field constitute a multifaceted problem. Four different kinds of field layout are designed and analyzed by the use of ray tracing and mathematical simulation techniques to determine the overall optical performance ${\eta}_{field}$ and the spillage ${\eta}_{spill}$.The power block including a Rankine cycle is analyzed by conventional energy balance methods.

  • PDF

CFD를 이용한 수평축 조류발전 로터 성능의 기초연구 (Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD)

  • 조철희;임진영;이강희;채광수;노유호;송승호
    • 신재생에너지
    • /
    • 제5권2호
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

모터부하를 고려한 상정사고 발생 시 저전압 부하차단 적용 방안에 대한 연구 (A Study on the Application of Under Voltage Load Shedding Scheme in Line Contingency considering Motor Load)

  • 이윤환
    • 전기학회논문지P
    • /
    • 제66권1호
    • /
    • pp.21-26
    • /
    • 2017
  • Failure of high-voltage transmission line, which is responsible for large-scale power transmission, can be reason for system voltage instability. There are many methods to prevent voltage instability like adjustment of equipment, the generator voltage setting, and load shedding. Among them, the load shedding, have a problem of economic loss and cascading effect to power system. Therefore, the execution of load shedding, amount and timing is very important. Conventionally, the load shedding setting is decided by the preformed simulation. Now, it is possible to monitor the power system in real time by the appearance of PMU(Phasor Measurement Unit). By this reason, some of research is performed about decentralized load shedding. The characteristics of the load can impact to amount and timing of decentralized load shedding. Especially, it is necessary to consider the influence of the induction motor loads. This paper review recent topic about under voltage load shedding and compare with decentralized load shedding scheme with conventional load shedding scheme. And simulations show the effectiveness of proposed method in resolving the delayed voltage recovery in the Korean Power System.

분산전원 연계 배전계통의 사고 특성 분석 (Analysis of a Fault Characteristics in the Power Network with Distributed Generators)

  • 장성일;박제영;최정환;정종찬;김광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.65-68
    • /
    • 2002
  • Distributed Generators (DG) are rapidly increasing and most of them are interconnected with distribution network to supply power into the network. Therefore, DG may make significant impacts on distribution system operation. protection, and control with respect to the voltage regulation, voltage flicker, harmonics, fault current levels, the losses of the network, etc. These impacts would be demerits for both of DG and distribution networks. And the operation of DG may be influenced by the abnormal grid condition such as disturbances occurred in the neighboring distribution feeders as well as the feeder directly connected with DG. This paper describes the influence of fault occurred in the interconnected power network on the DG operation and the impact of DG on the network load during the interruptions of utility power.

  • PDF

펄스방전 확공형 앵커용 시공 장비의 적용성 검토 (A Case Study of Applicability of Machines of Pulse Powered Underreamed Anchors)

  • 강금식;김재형;조규연;김태훈;김선주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1100-1106
    • /
    • 2009
  • This study intends to develop a pulse discharge device to strengthen the pushing power by expanding the cavity of the anchor settlement to form a spheric root for the purpose of constructing the economical and stable anchor. and, a series of field test were carried out in order to check applicability of machines of pulse powered underreamed anchors. Through the experiments, the electrical characteristics of the pulse power equipment had been identified it and the dynamic pressure generated from the subsequent change had been measured. Here, the measured dynamic pressure is the cavity expansion pressure to impact on the ground around the anchor settlement. Since this pressure has effects of cavity expansion and bored surface hardening with dynamic hardening effects on the anchor settlement, it is expected that it will largely contribute the increase of pushing power with a strong frictional resistance.

  • PDF

Microstructure and electrical properties of high power laser thermal annealing on inkjet printed Ag films

  • Yoon, Yo-Han;Yi, Seol-Min;Yim, Jung-Ryoul;Lee, Ji-Hoon;Joo, Young-Chang
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • In this work, the high power CW Nd:YAG laser has been used for thermal treatment of inkjet printed Ag films-involving eliminating organic additives (dispersant, binder, and organic solvent) of Ag ink and annealing Ag nanoparticles. By optimizing laser parameters, such as laser power and defocusing value, the laser energy can totally be converted to heat energy, which is used to thermal treatment of inkjet printed Ag films. This results in controlling the microstructures and the resistivity of films. We investigated the thermal diffusion mechanisms during laser annealing and the resulting microstructures. The impact of high power laser annealing on microstructures and electrical characteristic of inkjet printed Ag films is compared to those of the films annealed by a conventional furnace annealing. Focused ion beam (FIB) channeling image shows that the laser annealed Ag films have large columnar grains and dense structure (void free), while furnace annealed films have tiny grains and exhibit void formation. Due to these microstructural characteristics of laser annealed films, it has better electrical property (low resistivity) compared to furnace annealed samples.

  • PDF

석탄 바닥재 메움재 재활용을 위한 Field Test Cells로부터 오염물질 배출 특성 및 잠재적 영향 평가 (Leaching Characteristics and Potential Impact Assessment of Pollutants from Field Test Cells with Coal Bottom Ash as Fill Materials for Recycling)

  • 장용철;이성우;강희석;이승훈
    • 환경영향평가
    • /
    • 제22권2호
    • /
    • pp.135-145
    • /
    • 2013
  • The recycling of coal bottom ash generated from coal power plants in Korea has been limited due to heterogenous characteristics of the materials. The most common management option for the ash is disposal in landfills (i.e. ash pond) near ocean. The presence of large coarse and fine materials in the ash has prompted the desire to beneficially use it in an application such as fill materials. Prior to reuse application as fill materials, the potential risks to the environment must be assessed with regard to the impacts. In this study, a total of nine test cells with bottom ash samples collected from pretreated bottom ash piles and coal ash pond in a coal-fired power plant were constructed and operated under the field conditions to evaluate the leachability over a period of 210 days. Leachate samples from the test cells were analyzed for a number of chemical parameters (e.g., pH, salinity, electrical conductance, anions, and metals). The concentrations of chemicals detected in the leachate were compared to appropriate standards (drinking water standard) with dilution attenuation factor, if possible, to assess potential leaching risks to the surrounding area. Based on the leachate analysis, most of the samples showed slightly high pH values for the coal ash contained test cells, and contained several ions such as sodium, potassium, calcium, magnesium, chloride, sulfate, and nitrate in relatively large quantities. Three elements (aluminum, boron, and barium) were commonly detected above their respective detection limits in a number of leachate samples, especially in the early leaching period of time. The results of the test cell study indicate that the pollutants in the leachate from the coal ash test cells were not of a major concern in terms of leaching risk to surface water and groundwater under field conditions as fill materials. However, care must be taken in extending these results to actual applications because the results presented in this study are based on the limited field test settings and time frame. Structural characteristics and analysis for coal bottom ash may be warranted to apply the materials to actual field conditions.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • 제17권3호
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.