• Title/Summary/Keyword: Impact Forecast

Search Result 281, Processing Time 0.029 seconds

A Future Economic Model: A Study of the Impact of Food Processing Industry, Manufacturers and Distributors in a Thai Context

  • Maliwan SARAPAB;Duangrat TANDAMRONG
    • Journal of Distribution Science
    • /
    • v.21 no.7
    • /
    • pp.65-71
    • /
    • 2023
  • Purpose: This study attempted to analyze the impacts of the backward linkage and output multipliers, and investigate the price fluctuation and the price forecast amongst the manufacturing sectors associated with food processing industrial output of Thailand. Research design, data and methodology: The Thailand Input-Output table with a size of 180 x 180 sectors from 2005, 2010, and 2015 was utilized while the secondary data of the time series from January 2002 to December 2021 were processed via a multiplicative model and Box-Jenkins model. Results: The backward linkage analysis indicates that canning and preserving of the meat sector majorly utilized the factors of production from the slaughtering sector; canning and preservation of fish and other seafoods sector largely used those factors from the ocean and coastal fishing sector; and the sugar sector used those of the sugarcane sector. Notably, the output multiplier analysis indicated that output multipliers of those 3 manufacturing sectors were highly increased; meanwhile the price fluctuation continually existed in all forms. Besides, the price forecast suggested that prices of chicken and sugarcane tended to be higher; whereas, the price of shrimp was unstable. Conclusions: Food processing industry contains the favorable components to be one of the industries of the future of Thailand.

Strengthened Madden-Julian Oscillation Variability improved the 2020 Summer Rainfall Prediction in East Asia

  • Jieun Wie;Semin Yun;Jinhee Kang;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.185-195
    • /
    • 2023
  • The prolonged and heavy East Asian summer precipitation in 2020 may have been caused by an enhanced Madden-Julian Oscillation (MJO), which requires evaluation using forecast models. We examined the performance of GloSea6, an operational forecast model, in predicting the East Asian summer precipitation during July 2020, and investigated the role of MJO in the extreme rainfall event. Two experiments, CON and EXP, were conducted using different convection schemes, 6A and 5A, respectively to simulate various aspects of MJO. The EXP runs yielded stronger forecasts of East Asian precipitation for July 2020 than the CON runs, probably due to the prominent MJO realization in the former experiment. The stronger MJO created stronger moist southerly winds associated with the western North Pacific subtropical high, which led to increased precipitation. The strengthening of the MJO was found to improve the prediction accuracy of East Asian summer precipitation. However, it is important to note that this study does not discuss the impact of changes in the convection scheme on the modulation of MJO. Further research is needed to understand other factors that could strengthen the MJO and improve the forecast.

A Study of the Characteristics of Heavy Rainfall in Seoul with the Classification of Atmospheric Vertical Structures (대기연직구조 분류에 따른 서울지역 강한 강수 특성 연구)

  • Nam, Hyoung-Gu;Guo, Jianping;Kim, Hyun-Uk;Jeong, Jonghyeok;Kim, Baek-Jo;Shim, Jae-Kwan;Kim, Byung-Gon
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.572-583
    • /
    • 2019
  • In this study, the atmospheric vertical structure (AVS) associated with summertime (June, July, and August) heavy rainfall in Seoul was classified into three patterns (Loaded Gun: L, Inverted V: IV, and Thin Tube: TT) using rawinsonde soundings launched at Osan from 2009 to 2018. The characteristics of classified AVS and precipitation property were analyzed. Occurrence frequencies in each type were 34.7% (TT-type), 20.4% (IV-type), 20.4% (LG-type), and 24.5% (Other-type), respectively. The mean value of Convective Available Potential Energy (1131.1 J kg-1) for LG-types and Storm Relative Helicity (357.6 ㎡s-2) for TT-types was about 2 times higher than that of other types, which seems to be the difference in the mechanism of convection at the low level atmosphere. The composited synoptic fields in all cases showed a pattern that warm and humid southwesterly wind flows into the Korean Peninsula. In the cases of TT-type, the low pressure center (at 850 hPa) was followed by the trough in upper-level (at 500 hPa) as the typical pattern of a low pressure deepening. The TT-type was strongly influenced by the low level jet (at 850 hPa), showing a pattern of connecting the upper- and low-level jets. The result of analysis indicated that precipitation was intensified in the first half of all types. IV-type precipitation induced by thermal instability tended to last for a short term period with strong precipitation intensity, while TT-type by mechanical instability showed weak precipitation over a long term period.

기술예측에의 적용을 위한 상호영향분석법의 이론적 고찰 : 한계와 연구방향

  • 조근태;권철신
    • Journal of Technology Innovation
    • /
    • v.9 no.1
    • /
    • pp.95-120
    • /
    • 2001
  • One of the systematic attempts for technological forecasting is Delphi Method that externalizes and manipulates unformalized experts opinion in a particular problem or subject. It has, however, a critical shortcoming that it can not reflect the degree of interaction that exists among forecast events or subject. Gordon and Hayward(1969) criticize that when the forecast events are strongly interrelated, a totally unrealistic consensus may result. They proposed a new forecasting method that considers the interaction of events, that is, Cross Impact Analysis (CIA). A number of related models have been developed after them. In this study, we examine a variety of research results related to CIA obtained by literature survey and propose the limitation and future research direction. This analysis would be expected to help us to create a strategic scenario on future technology development at the government and firm level.

  • PDF

A Study on Airlines Network Changes by Emission Charges (배출가스 부과금에 따른 항공사 네트워크의 변화에 관한 연구)

  • Kim, Baek-Jae;Choi, Jin-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.178-186
    • /
    • 2017
  • Air travel has become an essential part of the global society and its sustainable development is expected. Airlines profit structure and network operation will be influenced by internalization of external costs like emission charge. This additional cost of the airlines will be directly pose air ticket fare increase and demand of air passenger will be decreased. EU-ETS is a part of environmental binding to airlines fly to EU territory airports. This study analyzes the impact of emission charges by application of EU-ETS on airlines network change. For long-term forecast, a reliable estimation of the future price of carbon dioxide (CO2) will be used.

The Optimal Hydrologic Forecasting System for Abnormal Storm due to Climate Change in the River Basin (하천유역에서 기후변화에 따른 이상호우시의 최적 수문예측시스템)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2193-2196
    • /
    • 2008
  • In this study, the new methodology such as support vector machines neural networks model (SVM-NNM) using the statistical learning theory is introduced to forecast flood stage in Nakdong river, Republic of Korea. The SVM-NNM in hydrologic time series forecasting is relatively new, and it is more problematic in comparison with classification. And, the multilayer perceptron neural networks model (MLP-NNM) is introduced as the reference neural networks model to compare the performance of SVM-NNM. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the forecasting of the hydrologic time series in Nakdong river. Furthermore, we can suggest the new methodology to forecast the flood stage and construct the optimal forecasting system in Nakdong river, Republic of Korea.

  • PDF

Reliability Evaluation considering Fuzzy-based Uncertainty of Peak Load Forecast (피크 부하의 불확실성을 고려한 전력계통의 신뢰도 산출)

  • Kim, Dong-Min;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.111-112
    • /
    • 2008
  • Although two types of uncertainty such as randomness and fuzziness simultaneously exist in power systems, yet they have been treated as distinct fields to evaluate the power system reliability. Thus, this paper presents a reliability assessment method based on a combined concept of fuzzy and probability. To reflect the two-fold uncertainty, a modified load duration curve(MLDC) is proposed using the probability distribution of historical load data in which a fuzzy model for the peak load forecast is embedded. IEEE RTS system was used to demonstrate the usefulness and applicability of the proposed method, and the reliability indices were obtained using the proposed MLDC. The results show a wider insight into impact of load fuzziness on uncertainties of reliability indices for power systems.

  • PDF

Robotics in Construction: Framework and Future Directions

  • Aparicio, Claudia Cabrera;Balzan, Alberto;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • In recent years the construction sector has grown significantly in terms of investment and research on robotics and automation, yet it is still a low-tech and disjointed industry. One of the main scopes of this paper is to determine how robotic automation can provide the answers to the needs this industry has. To that end, an overall framework and development agenda of current technological innovation in the field has been outlined. Possible drawbacks and driving forces in the development of robots in the construction site have been identified. In addition, the review provides for state-of-the-art policies and regulations, as well as the short and medium-term outlook in different markets and countries. Ultimately, the forecast impact on traditional processes, construction sites, emerging technologies and related professions has been summarized in order to delineate prospective repercussions and future directions towards self-sufficiency.

Analysis of Heavy Rain Hazard Risk Based on Local Heavy Rain Characteristics and Hazard Impact (지역 호우특성과 재해영향을 고려한 호우재해위험도 분석)

  • Yoon, Jun-Seong;Koh, June-Hwan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2017
  • Despite the improvement in accuracy of heavy rain forecasting, socioeconomic costs due to heavy rain hazards continue to increase. This is due to a lack of understanding of the effects of weather. In this study, the risk of heavy rain hazard was analyzed using the concepts of hazard, vulnerability, and exposure, which are key concepts of impact forecast presented by WMO. The potential impacts were constructed by the exposure and vulnerability variables, and the hazard index was calculated by selecting three variables according to the criteria of heavy rain warning. Weights of the potential impact index were calculated by using PCA and hazard index was calculated by applying the same weight. Correlation analysis between the potential impact index and damages showed a high correlation and it was confirmed that the potential impact index appropriately reflects the actual damage pattern. The heavy rain hazard risk was estimated by using the risk matrix consisting of the heavy rain potential impact index and the hazard index. This study provides a basis for the impacts analysis study for weather warning with spatial/temporal variation and it can be used as a useful data to establish the local heavy rain hazard prevention measures.

COVID-19 and the Korean Economy: When, How, and What Changes?

  • Park, ChangKeun;Park, JiYoung
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.2
    • /
    • pp.187-206
    • /
    • 2020
  • Under the on-going evolution of the COVID-19 pandemic, estimating the economic impact of the pandemic is highly uncertain and challenging. This situation makes it difficult for policymakers, governors, and economic entities to formulate appropriate responses and decision makings. To provide useful information about the effect of the COVID-19 pandemic on the Korean economy, this study examined macroeconomic impact analysis stemming from the pandemic shocks with different scenarios for the Korean economy. Based on three scenarios using the growth rate of 2020 GDP and consumer expenditure patterns, the 2021 GDP by industry sector was forecast with two new approaches. First, the recovering process of the Korean economy from the shock was analyzed by applying a Flex-IO method. Second, a new forecasting approach combined with an IO coefficient matrix was applied to forecast the future GDP changes. The findings of this study are summarized as follows: First, the total GDP growth rate under the Pessimistic Scenario demonstrates less rebound from the shock than that of the Base Scenario. Second, agriculture, culture, and tourism-related sectors that are suffering from the severe losses of COVID-19 showed lower resilience than other different industries. Third, information and communications technology (ICT) industry maintains a stable growth trend and is expected to take the leading role for the Korean economy in the post-COVID-19 and the Industry 4.0 eras. The findings deliver that it needs to analyze how government expenditure responding the shock into the forecasting model, which can be more useful and reliable to simulate the resilience from the pandemic.