• 제목/요약/키워드: Impact Force Measurement

검색결과 81건 처리시간 0.025초

안전한 토석류 관리를 위한 계측기 선정에 관한 연구 (Study of Determination in Measurement System for Safely Managing Debris-Flow)

  • 민대홍;윤형구
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

보행자보호 Lower Legform 충격의 해석 대 시험 상관성 개선에 관한 연구 (A Study on the Correlation Improvement between FEA and Test for a Pedestrian Lower Legform Impact)

  • 박동규
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1515-1522
    • /
    • 2011
  • 본 논문은 자동차 보행자보호 안전 항목 중 범퍼부에 해당하는 Lower Legform Impactor 충격에 대한 비선형 유한요소해석 결과와 보행자보호 충격 시험 결과와의 비교 및 정도 향상을 위한 해석적인 기법을 제시하였다. 유럽에서는 현재 법규로 평가되고 있는 범퍼부 보행자보호는 국내에서도 2013년부터 법규로 적용되어진다. 본 연구는 범퍼부 Lower Legform Impactor 충격을 위한 해석 시험의 상관성 확보를 위하여 굽힘각 저감용 스티프너의 단품 압축 시험을 통해 얻어진 힘 대 변위 커브의 분석을 통하여 해석 정도 확보를 위한 최적 모델링 방법을 찾아내고, 변위 측정 센서를 부착한 실차 시험과 해석 결과와의 변위값 및 거동간의 편차를 비교 분석하여 범퍼 보행자보호 해석의 정도성 확보를 위한 해석 기법을 제시하였다.

기능성 전문테니스화의 족저압력분포 분석 (A Study of In-sole Plantar Pressure Distribution in Functional Tennis Shoes)

  • 이중숙;김용재;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.99-118
    • /
    • 2004
  • The aim of this study is to evaluate tennis shoes's plantar pressure distribution in tennis prayers and to determine the influence of the shoe on various tennis movements. When investigating the biomechanics of movement in tennis, one of the first things to do is to understand the movement patterns of the sport, specifically how these patterns relate to different tennis shoes. Once these patterns are understood, footwear company can design tennis shoes that match the individual needs of tennis players. Plantar pressure measurement is widely employed to study foot function, the mechanical pathogenesis for foot disease and as a diagnostic and outcome measurement tool for many performance. Measurements were taken of plantar pressure distribution across the foot and using F-Scan(Tekscan Inc.) systems respectively. The F-Scan system for dynamic in-shoe foot pressure measurements has enabled us to assess quantitatively the efficacy of different types of footwear in reducing foot pressures. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right, left shoes. For this study 4 university male, high level tennis players were instructed to hit alternated forehand stroke, backhand stroke, forehand volley, backhand volley, smash, service movement in 4 different tennis shoes. 1. When impact in tennis movement, peak pressure distribution of landing foot displayed D>C>B>A, A displayed the best low pressure distribution. A style's tennis shoes will suggest prayer with high impact. If prayer with high impact feeling during pray in tennis wear A style, it will decrease injury, will have performance improvement. 2. When impact in tennis movement, plantar pattern of pressure distribution in landing foot displayed B>A>C>D in stability performance. During tennis, prayer want to stability movement suggest B style tennis shoes when tennis movement impact keep stability of human body. B style tennis shoes give performance improvement 3. When impact in tennis movement, plantar pattern of center of force(C.O.F.)trajectory in landing foot analyzed this : 1) When stroke movement and volley movement in tennis, prayer better to rearfoot movement. 2) when service movement, prayer midfoot strike movement. 3) when smash movement, prayer have forefoot strike movement.

등산화 아웃솔의 독립적 서스펜션 기능이 발의 안정성 및 부하에 미치는 효과 (Effect of Independent Suspension Function of Hiking Boots on the Stability and Load of Foot)

  • 이기광;최치선;은선덕
    • 대한인간공학회지
    • /
    • 제25권4호
    • /
    • pp.115-119
    • /
    • 2006
  • To investigate the effects of independent suspension technology(IST) of hiking boot on the stability and load of foot, eight participants performed medial and lateral drop landing from 33.4cm height and 85cm distance to uneven surface while wearing normal & IST hiking boots. For the stability of foot during the drop landing, the balance angle & suspension angle and rearfoot angle was analyzed using high-speed video analysis. Also kinetic analysis using the force plate and insole pressure measurement was conducted to analyze vertical & breaking ground reaction force and pressure distribution. Not only the balance angle & suspension angle but also rearfoot angle was improved with IST boots for lateral drop landing. These results indicate the IST boots may have the suspension function which keeps the foot to be stable during landing. However the IST boots did not show any effect for medial landing. This might be related to the hardness of medial part of outsole. Therefore the softer outsole of medial part could be recommended. Furthermore the impact force & breaking force and insole pressure were reduced with IST boot. These results means that IST boot has not only cushioning effect but also good grip effect. Therefore the hiking boots applied the independent suspension function may help to reduce fatigue and prevent injury such as ankle sprain in hiking on uneven surface.

평지와 내리막 달리기 시 하지 근육의 근 피로에 관한 연구 (The Analysis of the Muscle Fatigue for the Lower Limbs Muscle during the Level and Downhill Running)

  • 문곤성;이의린
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.181-190
    • /
    • 2007
  • The purpose of this study was to analyze the muscle fatigue for lower limbs during the level and downhill running. The subjects were 6 males of twenties who have no experience to get the injury in the lower limbs and required to run on the level and downhill which was -7% grade treadmill at 8.3km/h. EMG signal was gained by ME3000P8 Measurement Unit and computed the Median Frequency(MF) with the power spectrum analysis in the Megawin software. Rectus femoris(RF), Vastus lateralis(VL), Gluteus medius(GLU), Biceps Femoris(BF), gastrocnemius medial head(GM), gastrocnemius lateral head(GL), Tibialis anterior(TA) were selected. The result of this study were as follows: The MF of RF decreased in the downhill running than level running in length of time but, the MF of VL was opposite. The MF of BF decreased in the level and downhill running, but, the MF of BF decreased much in the level than downhill running. The MF of GLU decreased much in the downhill running but, almost no change in the level running. The MF of TA decreased in the level running than downhill running. The MF of GL decreased in the level running but, the MF of GM decreased in the downhill running in length of time. This study analyzed the muscle fatigue of the lower limbs with the median frequency on the basis of an assumption that the impact force for the flexion and extension of the joint and the body mass may be much in the eccentric contraction such as the downhill running than level running. RF and GM showed the muscle fatigue in the downhill running than level running. BF and GL showed the muscle fatigue in the level running than downhill running.

유한요소해석을 이용한 Gantry Robot의 동특성 및 측정 결과와의 상관관계 연구 (A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis)

  • 고만수;권순기;이석
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.269-274
    • /
    • 2015
  • IT 산업의 발달로 AOI 장비의 보급이 확산되고 있으며, 장비의 사용되는 카메라의 높은 해상도를 요구하고 있다. 높은 해상도를 얻기 위해 카메라의 중량이 증가되고 있으며, 그로 인해 진동변위가 커지게 되어 촬상에 문제가 생기고 제어 또한 어려워지고 있다. 본 연구에서는 유한요소 해석프로그램인 NX/NASTRAN을 이용하여 카메라가 관성에 의한 충격력을 받을 때의 과도응답분석을 해 보았다. 또한 Laser Interferometer 측정 결과와의 상관관계 분석을 통하여 향후 AOI의 구조 개선 시, 유한요소해석으로 설계의 신뢰성을 검증할 수 있도록 하기 위한 해석모델을 개발하였다.

碎波壓의 實海域 측정 (In Situ Measurement of Breaking Wave Pressures)

  • 심재설;전인식
    • 한국해안해양공학회지
    • /
    • 제11권3호
    • /
    • pp.141-148
    • /
    • 1999
  • 圓形 파일에 작용하는 卷波性 碎波力은 쇄파제원과 동일한 正弦波를를 대상으로 한 모리슨식의 계산치보다 그 크기는 월등 크나 보통 백분의 수초 이내의 매우 짧은 시간 동안 작용한다. 따라서, 碎波力을 받는 파일의 설계에서 파일의 變位를 정확히 결정하기 위해서는 쇄파력 작용에 의한 動的擧動을 해석하여야 한다. 이를 위해서는 파일 延長上 쇄파력의 시게열에 대한 事前정보가 필요하며, 이는 파일 주변의 碎波壓 시계열로부터 간접적으로 추정할 수 있다. 본 연구에서는 卷波性 碎波의 작용에 따른 쇄파압의 특성을 정량적으로 고찰하기 위하여 實海域에 설치되어 잇는 원형파일에 波壓計를 부착하여 쇄파압을 관측하고 그 결과를 제시하였다.

  • PDF

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • 제1권1호
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.

대형선박의 추진기 진동 모드 특성 (Vibration mode characteristics on a propeller in very large vessel)

  • 김재홍;조대승;한성용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.955-962
    • /
    • 2002
  • According to the trends of construction of large size vessel with high power, the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

대형선박의 추진기 진동 모우드 특성 (Vibration Mode Characteristics on a Propeller in very Large Vessel)

  • 김재홍;조대승;한성용
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.97-106
    • /
    • 2005
  • According to the trends of construction of large size vessel with high power the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF