• Title/Summary/Keyword: Impact Beam

Search Result 521, Processing Time 0.025 seconds

Single-flap versus double-flap approach for periodontal pocket reduction in supraosseous defects: a comparative study

  • Mathala, Venkata Lakshmi;Konathala, Santosh Venkata Ramesh;Gottumukkala, Naga Venkata Satya Sruthima;Pasupuleti, Mohan Kumar;Bypalli, Vivek;Korukonda, Radharani
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.4
    • /
    • pp.239-253
    • /
    • 2021
  • Purpose: The single-flap approach (SFA) is a minimally invasive technique with limited mucoperiosteal flap elevation to gain access to the buccal/palatal aspects, thus limiting post-surgical complications. The purpose of the present study was to gain insights into the impact of the SFA over the double-flap approach (DFA) on periodontal flap treatment outcomes and patient compliance in terms of discomfort and time taken for surgical procedures. Methods: Twenty patients with persistent probing pocket depths of ≥5 mm were scheduled for the SFA (test site) and for the DFA (control site). All the clinical periodontal parameters were recorded at baseline, 3 months, and 6 months. Radiographic bone level (cone-beam computed tomography) was evaluated at baseline and 6 months. Patients' postoperative pain perception and wound healing were also assessed. Results: The SFA showed a significant reduction in periodontal pocket depth, gain in clinical attachment level (CAL), and gain in bone level when compared with the DFA. The SFA substantially improved wound healing and induced less postoperative pain than the DFA. Conclusions: The SFA resulted in substantial improvement in the composite outcome measures, as shown by a reduction in pocket depth with minimal gingival recession, gain in CAL, early wound healing, less postoperative discomfort, and better patient-centered outcomes.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Comparative Study on the Weldability of Different Shipbuilding Steels

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.7-13
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies" Requirements for Approval of $CO_2$ Laser Welding Procedures" Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to $-50^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.ximum hardness.

  • PDF

COMPARATIVE STUDY ON THE WELDABILITY OF DIFFERENT SHIPBUILDING STEELS

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.222-228
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies′ Requirements for Approval of $CO_2$ Laser Welding Procedures". Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to -5$0^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.

  • PDF

Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis

  • Qiuyang Cheng;H. Elhosiny Ali;Ibrahim Albaijan
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.215-228
    • /
    • 2023
  • The vibrational behavior of nanoelements is critical in determining how a nanostructure behaves. However, combining vibrational analysis with stability analysis allows for a more comprehensive knowledge of a structure's behavior. As a result, the goal of this research is to characterize the behavior of nonlocal nanocyndrical beams with uniform and nonuniform cross sections. The nonuniformity of the beams is determined by three distinct section functions, namely linear, convex, and exponential functions, with the length and mass of the beams being identical. For completely clamped, fully pinned, and cantilever boundary conditions, Eringen's nonlocal theory is combined with the Timoshenko beam model. The extended differential quadrature technique was used to solve the governing equations in this research. In contrast to the other boundary conditions, the findings of this research reveal that the nonlocal impact has the opposite effect on the frequency of the uniform cantilever nanobeam. Furthermore, since the mass of the materials employed in these nanobeams is designed to remain the same, the findings may be utilized to help improve the frequency and buckling stress of a resonator without requiring additional material, which is a cost-effective benefit.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Functional Anatomy of the Temporomandibular Joint and Pathologic Changes in Temporomandibular Disease Progression: A Narrative Review

  • Yeon-Hee Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.14-35
    • /
    • 2024
  • The temporomandibular joint (TMJ) is one of the most unique joints in the human body that orchestrates complex movements across different orthogonal planes and multiple axes of rotation. Comprising the articular eminence of the temporal bone and the condylar process of the mandible, the TMJ integrates five major ligaments, retrodiscal tissues, nerves, and blood and lymph systems to facilitate its function. Cooperation between the contralateral TMJ and masticatory muscles is essential for coordinated serial dynamic functions. During mouth opening, the TMJ exhibits a hinge movement, followed by gliding. The health of the masticatory system, which is intricately linked to chewing, energy intake, and communication, has become increasingly crucial with advancing age, exerting an impact on oral and systemic health and overall quality of life. For individuals to lead a healthy and pain-free life, a comprehensive understanding of the basic anatomy and functional aspects of the TMJ and masticatory muscles is imperative. Temporomandibular disorders (TMDs) encompass a spectrum of diseases and disorders associated with changes in the structure, function, or physiology of the TMJ and masticatory system. Functional and pathological alterations in the TMJ and masticatory muscles can be visualized using various imaging modalities, such as cone-beam computed tomography, magnetic resonance imaging, and bone scans. An exploration of potential pathophysiological mechanisms related to the TMJ anatomy contributes to a comprehensive understanding of TMD and informs targeted treatment strategies. Hence, this narrative review presents insights into the fundamental functional anatomy of the TMJ and pathological changes that evolve with TMD progression.

Bending and stability information of cylindrical structures in the application of sports equipment

  • Xiaoyuan Liu;Radzliyana Radzuwan;Nadiah Diyana Tan Binti Abdullah
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.189-203
    • /
    • 2023
  • This study investigates the bending and stability properties of cylindrical constructions, with a focus on their use in the design and implementation of sporting equipment. The work focuses on a cylindrical construction resembling nanomotors, similar to components seen in sports equipment, using mathematical modeling based on high-order beam theory and nonlocal strain gradient theory. The analysis provides important insights into the dynamic behavior of these systems, revealing light on the impact of numerous factors such as rotational velocity, section change rate, and structural dimensions. The results show a relationship between angular velocity growth and section change rate, which leads to an increase in fundamental frequency values. Furthermore, the research emphasizes the effect of structural factors on dynamic deflection, giving critical information for increasing the stability and performance of sporting equipment. This study adds to the area of sports engineering by providing a more nuanced understanding of how cylindrical constructions react under diverse settings. The results will help to guide the design and manufacturing processes of sports equipment, assuring improved stability and performance for players across a wide range of sports.

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.

Aerodynamic parameters selection and windbreak mechanism of wind barrier for high-speed railway bridge

  • Yujing Wang;Weiwei Guo;He Xia;Qinghai Guan;Shaoqin Wang
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.411-425
    • /
    • 2024
  • To investigate the optimal aerodynamic parameters of wind barriers for the T-beam of high-speed railway (HSR) bridge and the wind field of the wind barrier-train-bridge system, the three-component forces of the system and the wind pressure on the vehicle surface were tested and analyzed through the sectional model wind test. The effects of wind velocity, with/without wind barrier, the height of wind barrier, and the air permeability of the wind barrier on the aerodynamic characteristics of the train-bridge system are discussed. Additionally, a CFD numerical model is constructed to evaluate the wind environment of the bridge surface with/without the wind barrier, and the impact of wind barrier on the running safety of vehicles are analyzed. Comprehensively considering the running safety of the train and the wind-resistant stability of the bridge, it is more appropriate to set the wind barrier height H as 3.5 m and the porosity 𝛽 as 30% respectively.