• 제목/요약/키워드: Impact Beam

검색결과 521건 처리시간 0.032초

Impact of Temporary Link Blockage on Ergodic Capacity of FSO System

  • Petkovic, Milica I.;Djordjevic, Goran T.
    • ETRI Journal
    • /
    • 제40권3호
    • /
    • pp.330-336
    • /
    • 2018
  • Free-space optical (FSO) systems have attracted much attention from both research and application perspectives owing to their many benefits, such as license-free operation, low-cost, and high data rates. This paper investigates the ergodic capacity of FSO systems, which is an important metric of system performance. The stochastic temporary laser-beam blockage, pointing errors, and atmospheric turbulence are simultaneously considered. The results illustrate that the link blockage causes a decreased ergodic capacity. We show that to maximize the ergodic capacity, there is an optimal value of the laser-beam radius at the waist, which largely depends on pointing errors; however, it is independent of the atmospheric turbulence and the probability of link blockage.

층간응력의 효과를 고려한 단일방향 900복합재 적층보의 진동감쇠 해석 (Vibraion Damping Analysis in $90^0$ Laminated Beam Considering the Effect of Interlaminar Stess)

  • 임종휘
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1261-1270
    • /
    • 2000
  • This paper is concerned with the development of a general model for predicting material damping in laminates based on the strain energy method. In this model, the effect of interlaminar stress on damping is taken into accounts along with those of in-plane extension/compression and in-plane shear. The model was verified by carrying out the damping measurements on $90^0$ unidirectional composite beams varying length and thickness. The analytical predictions were favorably compared with the experimental data. The transverse shear($$\sigma$_{yz}$) appears to have a considerable influence on the damping behaviors in $90^0$ unidirectional polymer composites. However, the other interlaminar stresses($$\sigma$_{xz}$, $$\sigma$_z$) were shown to have little impact on vibration damping in $90^0$ laminated composite beam.

이온빔으로 표면처리한 스펙트라/비닐에스테르 복합재의 인장특성 (A Study on the Tensile Characteristics of Spectra/Vinylester Composites with Ion Beam Treatment of Spectra Fibers.)

  • 신동혁;이경엽
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.206-210
    • /
    • 2002
  • The use of Spectra fibers as fiber cloth is increasing because of their excellent impact resistance. However, a major limitation on the use of Spectra fibers is a chemical inertness. In this Study, Spectra fibers were surface-treated using Ar$^{+}$ ion beam under oxygen environment to improve the tensile property of Spectra/vinylester composites. The effect of surface treatment of Spectra fibers on the tensile property of Spectra/vinylester composites was determined from tensile tests using Spectra/vinylester composite specimens with and without a hole. It was found that the tensile stiffness and strength of surface-treated case were 22% and 17% higher than those of untreated case for specimens with no hole. The maximum load of surface-treated case was about 15% higher than that of untreated case for specimens with a hole.

갈릴리안 광학계를 사용한 IM/DD 광무선통신 시스템에서 830[nm] 광파장에 대한 전송거리 제한 해석 (Numerical Study on the Link Range of the IM/DD Wireless Optical Communication at 830[nm] Optical Wavelength using Galilean Optics)

  • 홍권의;고성원;조정환
    • 조명전기설비학회논문지
    • /
    • 제25권11호
    • /
    • pp.123-129
    • /
    • 2011
  • In terrestrial wireless optical communication links, atmospheric effects including turbulence, absorption and scattering have significant impact on the system performance. Based on the analysis of transmission in atmospheric channel concerning 830[nm] wavelength diode laser beam, performance of free space optical (FSO) link utilizing Galilean optics as a laser beam transmitting and receving optics, PIN photodiode as a detecting device. In this paper we designed optical link equation for received optical power and we analyze the atmospheric effects on the signal to noise ratio (SNR) and bit error rate (BER) of an terrestrial FSO system. We show that the possible communication distance for BER=$10^{-9}$ in proposed adverse atmospheric conditions.

Bending and buckling of spinning FG nanotubes based on NSGT

  • Zhang, Liang;Ko, Tzu-Hsing
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.243-256
    • /
    • 2022
  • The static analysis of spinning functionally graded (FG) nanotube on the basis of the nonlocal strain gradient theory (NSGT) is presented. The high-order beam theory is employed for mathematical modeling of the tube structures according to the Sinusoidal shear deformation beam theory. The energy conservation principle is operated to generate the equations. The centrifugal force is assumed along the tube length due to the rotating of the tube, moreover, the nanotube is made of functionally graded material (FGM) composed of ceramic and metal phases along the tube radius direction. The generalized differential quadratic method (GDQM) is utilized to solve the formulations. Finally, the numerical results are discussed in detail to examine the impact of different relevant parameters on the bending the buckling behavior of the rotating nanotube.

Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes

  • Wu, Xiongwei;Fang, Ting
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.617-627
    • /
    • 2022
  • In the current study, the nonlinear impact of the Von-Kármán theory on the vibrational response of nonhomogeneous structures of functionally graded (FG) nano-scale tubes is investigated according to the nonlocal theory of strain gradient theory as well as high-order Reddy beam theory. The inhomogeneous distributions of temperature-dependent material consist of ceramic and metal phases in the radial direction of the tube structure, in which the thermal stresses are applied due to the temperature change in the thickness of the pipe structure. The general motion equations are derived based on the Hamilton principle, and eventually, the acquired equations are solved and modeled by the Meshless approach as well as a computer simulation via intelligent mathematical methodology. The attained results are helpful to dissect the stability of the MEMS and NEMS.

The dynamic response of FG cylindrical beam subjected to bending and the centrifugal force of rotation on the basis of modified size-dependent high-order theories

  • Jun Xiang;Mengran Xu
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.47-61
    • /
    • 2023
  • This paper examines the dynamic response of rotating nanodevices under the external harmonic load. The spinning nanosystem is made of nanoscale tubes that rotate around the central nanomotor and is mathematically modeled via high-order beam theory as well as nonclassical nonlocal theory for the size impact. According to the Hamilton principle, the dynamic motion equations are derived, then the time-dependent results are obtained using the Newmark Beta technique along with the generalized differential quadratic method. The presented results are discussed dynamic deflection, resonant frequency, and natural frequency in response to the different applicable parameters, which help develop and produce nanoelectromechanical systems (NEMS) for various applications.

Experimental validation of dynamic based damage locating indices in RC structures

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.181-206
    • /
    • 2022
  • This paper presents experimental modal analysis and static load testing results to validate the accuracy of dynamic parameters-based damage locating indices in RC structures. The study investigates the accuracy of different dynamic-based damage locating indices compared to observed crack patterns from static load tests and how different damage levels and scenarios impact them. The damage locating indices based on mode shape curvature and mode shape fourth derivate in their original forms were found to show anomalies along the beam length and at the supports. The modified forms of these indices show higher sensitivity in locating single and multi-cracks at different damage scenarios. The proposed stiffness reduction index shows good sensitivity in detecting single and multi-cracks. The proposed anomalies elimination procedure helps to remove the anomalies along the beam length. Also, the adoption of the proposed weighting method averaging procedure and normalization procedure help to draw the overall crack pattern based on the adopted set of modes.

Cone-Beam CT에서 물질 및 호흡 변화가 영상에 미치는 영향에 대한 고찰 (Consideration of the Effect according to Variation of Material and Respiration in Cone-Beam CT)

  • 나준영;김정미;김대섭;강태영;백금문;권경태
    • 대한방사선치료학회지
    • /
    • 제24권1호
    • /
    • pp.15-21
    • /
    • 2012
  • 목 적: 본원에서 시행하고 있는 영상유도 방사선치료(Image Guided Radiation Therapy, IGRT)는 On-Board Imager system(OBI)을 이용하여 실시하고 있다. 본 논문에서는 Cone-Beam CT에서 물질 및 호흡의 변화가 영상에 미치는 영향을 분석하고 평가하고자 한다. 대상 및 방법: 호흡의 모양을 임의로 조정할 수 있는 구동 팬텀(Motion Phantom)을 이용하여 기준 호흡에 따른 주기, 진폭, 기저호흡(Baseline)을 변화시키면서 폐 등가 물질 내의 지름 3 cm인 구 형태의 아크릴(Acryl)과 임상에 이용되고 있는 표지자(Fiducial Marker) 두 물질에 대하여 Cone-Beam CT를 총 3회 획득하고, 분석하였다. 결 과: 첫 번째 물질의 종류에 따라 구동 팬텀의 동일한 움직임을 원형 아크릴(Arcyl)일 때 100%, 표지자일 때 120% 나타내었다. 두 번째 기준 호흡 변화에 따라 기준 호흡의 영상크기를 1로 상쇄(Offset)하면 원형 아크릴(Arcyl)의 경우 기저호흡(Baseline)을 1.8 mm 이동 시켰을 때 1.13, 3.3 mm 이동 시켰을 때 1.27, 주기가 1초일 때 1.01, 2.5초일 때 1.045, 진폭이 기준의 0.7배일 때 0.86, 1.7배일 때 1.43의 변화를 보였고, 표지자의 경우 Baseline 1.8 mm shift일 때 1.18, 3.3 mm shift일 때 1.34, 주기가 1초일 때 1.0, 2.5초일 때 1.0, 진폭이 기준의 0.7배일 때 0.99, 1.7배일 때 1.66의 변화를 보였다. 결 론: Cone-Beam CT는 물질에 따라 그 움직임을 나타내는 것에 Fiducial marker의 경우 영상 크기에 20%의 영향이 있었다. 호흡의 변화에 따른 영향은 아크릴(Arcyl)의 경우 최소 13% 최대 43%, Fiducial marker의 경우 최소 18% 최대 66%의 변화를 보였다. 이런 영상의 차이는 큰 불확실성 요인이므로 Cone-Beam CT 획득 전에 환자의 호흡을 안정화해야 한다. 또한 영상획득 중간에도 지속적인 환자의 호흡 관찰을 하여 환자의 큰 호흡변화를 관찰하였다면 영상유도 후에 반드시 투시를 이용하여 치료부위를 확인할 필요가 있으며 재 Cone-Beam CT 획득을 통하여 보다 정확한 영상유도를 하는 것이 바람직하다고 사료된다.

  • PDF

The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

  • Kang, Se-Ryong;Bok, Sung-Chul;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제46권2호
    • /
    • pp.116-127
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods: We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results: SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions: There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses.