• Title/Summary/Keyword: Immunosenescence

Search Result 6, Processing Time 0.024 seconds

Cisd2 deficiency impairs neutrophil function by regulating calcium homeostasis via Calnexin and SERCA

  • Un Yung Choi;Youn Jung Choi;Shin-Ae Lee;Ji-Seung Yoo
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.256-261
    • /
    • 2024
  • In the context of aging, the susceptibility to infectious diseases increases, leading to heightened morbidity and mortality. This phenomenon, termed immunosenescence, is characterized by dysregulation in the aging immune system, including abnormal alterations in lymphocyte composition, elevated basal inflammation, and the accumulation of senescent T cells. Such changes contribute to increased autoimmune diseases, enhanced infection severity, and reduced responsiveness to vaccines. Utilizing aging animal models becomes imperative for a comprehensive understanding of immunosenescence, given the complexity of aging as a physiological process in living organisms. Our investigation focuses on Cisd2, a causative gene for Wolfram syndrome, to elucidate on immunosenescence. Cisd2 knockout (KO) mice, serving as a model for premature aging, exhibit a shortened lifespan with early onset of aging-related features, such as decreased bone density, hair loss, depigmentation, and optic nerve degeneration. Intriguingly, we found that the Cisd2 KO mice present a higher number of neutrophils in the blood; however, isolated neutrophils from these mice display functional defects. Through mass spectrometry analysis, we identified an interaction between Cisd2 and Calnexin, a protein known for its role in protein quality control. Beyond this function, Calnexin also regulates calcium homeostasis through interaction with sarcoendoplasmic reticulum calcium transport ATPase (SERCA). Our study proposes that Cisd2 modulates calcium homeostasis via its interaction with Calnexin and SERCA, consequently influencing neutrophil functions.

Effect of polysaccharides from a Korean ginseng berry on the immunosenescence of aged mice

  • Kim, Miseon;Yi, Young-Su;Kim, Juewon;Han, Sang Yun;Kim, Su Hwan;Seo, Dae Bang;Cho, Jae Youl;Shin, Song Seok
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.447-454
    • /
    • 2018
  • Background: Korean ginseng has been widely evaluated to treat human diseases; however, most studies on Korean ginseng have focused on its root. In this study, polysaccharides [acidic-polysaccharide-linked glycopeptide (APGP) extracted with 90% ethanol and hot water] were prepared from Korean ginseng berries, and their effect on immunosenescence was explored. Methods: The effect of APGP on thymic involution was evaluated by measuring the size of thymi dissected from aged mice. The effect of APGP on populations of immune cells, including natural killer (NK) cells, dendritic cells, age-correlated CD11c-positive B cells, and several subtypes of T cells [CD4-positive, CD8-positive, and regulatory (Treg) T cells] in the thymi and spleens of aged mice was analyzed by fluorescence-activated cell sorting analysis. Serum levels of interleukin (IL)-2 and IL-6 were evaluated by enzyme-linked immunosorbent assay analysis. Profiles of APGP components were evaluated by high-performance liquid chromatography (HPLC) analysis. Results: APGP suppressed thymic involution by increasing the weight and areas of thymi in aged mice. APGP increased the population of NK cells, but showed no effect on the population of dendritic cells in the thymi and spleens of aged mice. APGP decreased the population of age-correlated CD11c-positive B cells in the spleens of aged mice. APGP showed no effect on the populations of CD4- and CD8-positive T cells in the thymi of aged mice, whereas it increased the population of Treg cells in the spleens of aged mice. APGP further decreased the reduced serum levels of IL-2 in aged mice, but serum levels of IL-6 were not statistically changed by APGP in aged mice. Finally, HPLC analysis showed that APGP had one major peak at 15 min (a main type of polysaccharide) and a long tail up to 35 min (a mixture of a variety of types of polysaccharides). Conclusion: These results suggested that APGP exerted an anti-immunosenescent effect by suppressing thymic involution and modulating several types of immune cells.

Cytomegalovirus Infection and Memory T Cell Inflation

  • Kim, Jihye;Kim, A-Reum;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.15 no.4
    • /
    • pp.186-190
    • /
    • 2015
  • Cytomegalovirus (CMV) infection in healthy individuals is usually asymptomatic and results in latent infection. CMV reactivation occasionally occurs in healthy individuals according to their immune status over time. T cell responses to CMV are restricted to a limited number of immunodominant epitopes, as compared to responses to other chronic or persistent viruses. This response results in progressive, prolonged expansion of CMV-specific $CD8^+$ T cells, termed 'memory inflation'. The expanded CMV-specific $CD8^+$ T cell population is extraordinarily large and is more prominent in the elderly. CMV-specific $CD8^+$ T cells possess rather similar phenotypic and functional features to those of replicative senescent T cells. In this review, we discuss the general features of CMV-specific inflationary memory T cells and the factors involved in memory inflation.

Impact of mesenchymal stem cell senescence on inflammaging

  • Lee, Byung-Chul;Yu, Kyung-Rok
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.65-73
    • /
    • 2020
  • Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.

Gintonin-enriched fraction improves sarcopenia by maintaining immune homeostasis in 20- to 24-month-old C57BL/6J mice

  • Oh, Hyun-Ji;Jin, Heegu;Nah, Seung-Yeol;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.744-753
    • /
    • 2021
  • Background: Gintonin-enriched fraction (GEF) is a new non-saponin component glycolipoprotein isolated from ginseng root. This study examined the effect of GEF on age-related sarcopenia in old C57BL/6J mice. Methods: Young (3-6 months) and old (20-24 months) C57BL/6J mice received oral GEF (50 mg/kg/day or 150 mg/kg/day) daily for 5 weeks. During the oral administration period, body weight and grip strength were measured weekly. After sacrifice, muscles from the hindlimb were excised and used for hematoxylin and eosin staining and western blotting to determine the effects of GEF on sarcopenia. The thymus was photographed to compare size, and flow cytometry was performed to examine the effect of GEF on immune homeostasis in the thymus and spleen. Blood samples were collected, and the concentrations of pro-inflammatory cytokines and IGF-1 were measured. Results: GEF caused a significant increase in muscle strength, mass, and fiber size in old mice. GEF restored age-related disruption of immune homeostasis by maintaining T cell compartments and regulating inflammatory biomarkers. Thus, GEF reduced common low-grade chronic inflammatory parameters, which are the main cause of muscle loss. Conclusion: GEF maintained immune homeostasis and inhibited markers of chronic inflammation, resulting in anti-sarcopenia effects in aged C57BL/6J mice. Thus, GEF is a potential therapeutic agent that slows sarcopenia in the elderly.

Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients

  • Kyung Taek Hong;Yeon Jun Kang;Jung Yoon Choi;Young Ju Yun;Il-Moo Chang;Hee Young Shin;Hyoung Jin Kang;Won-Woo Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.68-76
    • /
    • 2024
  • Background: Although the survival outcomes of childhood cancer patients have improved, childhood cancer survivors suffer from various degrees of immune dysfunction or delayed immune reconstitution. This study aimed to investigate the effect of Korean Red Ginseng (KRG) on T cell recovery in childhood cancer patients who underwent autologous hematopoietic stem cell transplantation (ASCT) from the perspective of inflammatory and senescent phenotypes. Methods: This was a single-arm exploratory trial. The KRG group (n = 15) received KRG powder from month 1 to month 12 post-ASCT. We compared the results of the KRG group with those of the control group (n = 23). The proportions of T cell populations, senescent phenotypes, and cytokine production profiles were analyzed at 1, 3, 6, and 12 months post-ASCT using peripheral blood samples. Results: All patients in the KRG group completed the treatment without any safety issues and showed a comparable T cell repopulation pattern to that in the control group. In particular, KRG administration influenced the repopulation of CD4+ T cells via T cell expansion and differentiation into effector memory cell re-expressing CD45RA (EMRA) cells. Although the KRG group showed an increase in the number of CD4+ EMRA cells, the expression of senescent and exhausted markers in these cells decreased, and the capacity for senescence-related cytokine production in the senescent CD28- subset was ameliorated. Conclusions: These findings suggest that KRG promotes the repopulation of CD4+ EMRA T cells and regulates phenotypical and functional senescent changes after ASCT in pediatric patients with cancer.